CytoSorbents_{...}

Early antibiotics in septic shock: is it that important?

Prof. Zsolt Molnár^{1,2,3}

¹Medical Director: CytoSorbents Europe, Berlin, Germany ²Professor: Institute for Translational Medicine, School of Medicine, University of Pécs, Hungary ³Professor: Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Poznan, Poland

32

NATURE

JULY 4, 1936

A Syndrome produced by Diverse Nocuous Agents

EXPERIMENTS on rats show that if the organism is severely damaged by <u>acute non-specific nocuous</u> agents such as exposure to cold, surgical injury, production of spinal shock (transcision of the cord), excessive muscular exercise, or intoxications with sublethal doses of diverse drugs (adrenaline, atropine, morphine, formaldehyde, etc.), <u>a typical</u> syndrome appears, the symptoms of which are independent of the nature of the damaging agent or the pharmacological type of the drug employed, and represent rather a response to damage as such.

(Tr

Interpreting biomarkers in infectious diseases in intensive care unit: the potential role of procalcitonin

Fatime Hawchar, Zsolt Molnar

entre toi

Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy

Centre for TRANSLATIONAL

Richard S. Hotchkiss¹, Guillaume Monneret² and Didier Payen³

Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy

Centre for TRANSLATIONAL

Richard S. Hotchkiss¹, Guillaume Monneret² and Didier Payen³

The mantra goes as: ,,Give antibiotic(s) within the 1st hour!"

Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock*

Anand Kumar, MD; Daniel Roberts, MD; Kenneth E. Wood, DO; Bruce Light, MD; Joseph E. Parrillo, MD; Satendra Sharma, MD; Robert Suppes, BSc; Daniel Feinstein, MD; Sergio Zanotti, MD; Leo Taiberg, MD; David Gurka, MD; Aseem Kumar, PhD; Mary Cheang, MSc

(Crit Care Med 2006; 34:1589-1596)

Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock

R. Phillip Dellinger, MD; Jean M. Carlet, MD; Henry Masur, MD; Henwig Gerlach, MD, PhD; Thierry Calandra, MD; Jonathan Cohen, MD; Juan Gea-Banacloche, MD, PhD; Didier Keh, MD; John C. Marshall, MD; Margaret M. Parker, MD; Graham Ramsay, MD; Janice L. Zimmerman, MD; Jean-Louis Vincent, MD, PhD; Mitchell M. Levy, MD; for the Surviving Sepsis Campaign Management Guidelines Committee

C. Antibiotic Therapy

 Intravenous antibiotic therapy should be started within the first hour of recognition of severe sepsis, after appropriate cultures have been obtained.

CONFERENCE REPORTS AND EXPERT PANEL

Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016

D. ANTIMICROBIAL THERAPY

 We recommend that administration of IV antimicrobials be initiated as soon as possible after recognition and within 1 h for both sepsis and septic shock (strong recommendation, moderate quality of evidence; grade applies to both conditions).

Antibiotics for Sepsis: Does Each Hour Really Count, or Is It Incestuous Amplification?

American Journal of Respiratory and Critical Care Medicine Volume 196 Number 7 | October 1 2017

"Each hour's delay in initiating antibiotics costs lives" is a doctrine that has attained quasireligious status. Like most (quasi) religions, this is founded more on faith and hope than hard fact."

"The "each hour delay" mantra is, however, being drummed into healthcare providers, hospital administrators, funders, and governmental bodies. Quality-improvement programs are being driven by financial penalty."

Bloos et al. Critical Care 2014, 18/R42 http://ccforum.com/content/18/2/R42

Open Access

RESEARCH

ſ

Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: a prospective observational multi-center study

Frank Bloos¹²⁴, Daniel Thomas-Rüddel¹², Hendrik Rüddel¹, Christoph Engel¹, Daniel Schwarzkopf⁰, John C Marshal⁴, Stephan Harbarth³, Philipp Simon⁶, Reimer Riessen⁷, Didier Keh⁴, Karin Dey⁹, Manfred WeiB¹⁰, Susanne Toussaint¹¹, Dirk Schädler¹², Andreas Weyland¹³, Maximilian Ragaller¹⁴, Konrad Schwarzkopf¹³, Jürgen Eiche¹⁶, Gerhard Kuhnle¹⁷, Heike Hoyer¹⁸, Christiane Hartog¹², Udo Kalsers⁶ and Konrad Reinhart¹² for the MEDUSA Study Group

Surgical source control required $(n = 234)^{f}$

Time to antimicrobial therapy >1 hour ^b	0.80 (0.38 to 1.72)	0.552
Initial SOFA score ^c	1.19 (1.08 to 1.31)	< 0.001
Age ^d	1.06 (1.03 to 1.08)	< 0.001
Maximum lactate (day 1) ^e	1.08 (1.00 to 1.13)	0.046
Time to source control >6 hours	2.36 (1.22 to 4.71)	0.012
Intra-abdominal focus	1.08 (0.54 to 2.18)	0.822
Urogenital focus	0.43 (0.12 to 1.34)	0.165
Unknown focus ⁹		-
Community-acquired infection	1.08 (0.58 to 2.04)	0.800
Inadequate empiric antimicrobial therapy	1.17 (0.61 to 2.24)	0.646
No de-escalation of antimicrobials within 5 days	0.94 (0.33 to 2.81)	0.909

REVIEW

Rationalizing antimicrobial therapy in the ICU: a narrative review

Jean-François Timsit^{1,2*}, Matteo Bassetti³, Olaf Cremer⁴, George Daikos⁵, Jan de Waele⁶, Andre Kallil⁷, Eric Kipnis⁸, Marin Kollef⁹, Kevin Laupland¹⁰, Jose-Artur Paiva¹¹, Jesús Rodríguez-Baño¹², Étienne Ruppé^{2,13}, Jorge Salluh¹⁴, Fabio Silvio Taccone¹⁵, Emmanuel Weiss^{16,17} and François Barbier¹⁸

Intensive Care Med (2019) 45:172-189 https://doi.org/10.1007/s00134-019-05520-5

Table 1 Determinants of increased risk of MDRB infection at ICU admission and during the ICU stay

Predictors of MDRB infection	At ICU admission	During the ICU stay
Patient features	Co-morbid illness/immunosuppression/recent hospital and/or ICU stay	Higher severity of acute illness/Invasive interventions
Type of infection	Hospital-acquired > healthcare-associated > community-acquired	ICU-acquired > others
Antimicrobial selection pressure	Prior antibiotics*/antifungals	Antibiotics*/antifungals in the ICU
Colonization status	Previously documented colonization with MDRB	In-ICU acquisition of MDRB

3 times more AB on ICU then on wards

MDRB multidrug-resistant bacteria, ICU intensive care unit

*Especially if agents with broad-spectrum and/or potent activity against intestinal anaerobes

70% of patients receive ABs

Organ injury

Wright J, Paauw DS. Complications of antibiotic therapy. Med Clin North Am 2013;97:667–679, xi.

Mitochondrial dysfunction

Singh R, Sripada L, Singh R. Side effects of antibiotics during bacterial infection: mitochondria, the main target in host cell. *Mitochondrion* 2014;16:50–54.

Microbiome, Fungal infections

Alverdy JC, Krezalek MA. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis. *Crit Care Med* 2017;45:337–347.

Clostridium difficile infections

Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, Molina A, Shirihai OS, Collins JJ. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med 2013;5:192ra85.

Research article

Stefano Bassetti*1.4

Empirical use of antibiotics and adjustment of empirical antibiotic therapies in a university hospital: a prospective observational study Julian Mettler¹, Mathew Simcock^{1,2}, Pedram Sendi^{1,2}, Andreas F Widmer¹, Roland Bingisser³, Manuel Battegay¹, Ursula Fluckiger¹ and

BMC Infectious Diseases 2007, 7:21

Open Access

Characteristic	Patients (n) receiving adequate empirical antibiotic treatment	Patients (n) receiving inadequate empirical antibiotic treatment	p-value	OR (95% CI) for adequate therapy
Number of patients	418 (77.6%)	121 (22.4%)		
Women	170 (70.2%)	72 (29.8%)	< 0.001	0.47 (0.31-0.70)
Age	3 12.			
Median age and range (years)	67 [18-100]	72 [17-97]	0.038*	
< 40 years	74 (77.1%)	22 (22.9%)	0.904	0.97 (0.57-1.64)
41 – 60 yr.	91 (87.5%)	13 (12.5%)	0.007	2.31 (1.12-4.30)
> 60 years	253 (74.6%)	86 (25,4%)	0.034	0.62 (0.40-0.97)
Ward:		280	,	
Medicine/Geriatrics	281 (78.3%)	78 (2)	0.399	1.19 (0.80-1.76)
Surgery	135 (78.9%)	36 (21.19)	0.733	1.09 (0.70-1.65)
Medical and surgical intensive care	25 (71.4%)	10 (28.6%)	0.408	0.73 (0.34-1.55)
Neurology	1 (25.0%)	3 (75.0%)	0.040†	0.10 (0.01-0.94)
Died in hospital	25 (80.6%)	6 (19.4%)	0.671	1.22 (0.49-3.04)

So, what to do?!

American Thoracic Society Documents

entre foi

Clinical Practice Guidelines for the Diagnosis and Management of Intravascular Catheter-Related Infection: 2009 Update by the Infectious Diseases

Is there infection for a start?!

Issam I. Raad,⁶ Bart J. A. Rijnders,¹⁰ Robert J. Sherertz,⁷ and David K. Warren⁸

and the intectious Diseases society of America

Joseph S. Solomkin,¹ John E. Mazuski,² John S. Bradley,³ Keith A. Rodvold,⁷⁸ Ellie J. C. Goldstein,⁵ Ellen J. Baron,⁶ Patrick J. O'Neill,⁹ Anthony W. Chow,³⁶ E. Patchen Dellinger,³⁰ Soumitra R. Eachempati,¹¹ Sherwood Gorbach,³² Mary Hilfiker,⁴ Addison K. May,¹³ Avery B. Nathens,¹⁷ Robert G. Sawyer,³⁴ and John G. Bartlett¹⁵

Does the patient have **infection** or not?

Research Article

Delta Procalcitonin Is a Better Indicator of Infection Than Absolute Procalcitonin Values in Critically Ill Patients: A Prospective Observational Study

Domonkos Trásy,¹ Krisztián Tánczos,¹ Márton Németh,¹ Péter Hankovszky,¹ András Lovas,¹ András Mikor,¹ Edit Hajdú,² Angelika Osztroluczki,¹ János Fazakas,³ and Zsolt Molnár¹

Journal of Immunology Research Volume 2016, Article ID 3530752, 9 pages http://dx.doi.org/10.1155/2016/3530752

Æ

Auguste Rodin: The Thinker (1880)

The "new" SepsEast team

Ovidiu Bedreag Organizind Committee

Dorel Sandesc Chair of Organizing Committee

Jan Benes Chair SepsEast

Konstanty Szuldrzynski Secretary SepsEast

SepsEast 2020: <u>www.sepseast.org</u> 24-26 September, Timisoara, Roamnia

