

FAKULTNÍ NEMOCNICE U SV. ANNY V BRNĚ MEZINÁRODNÍ CENTRUM KLINICKÉHO VÝZKUMU

Imunoterapie Sepse

Martin HELÁN

26.4.2022 Colours of Sepsis, Ostrava

Lecture content

- Background Surviving sepsis campaign additional therapies
- Failure of clinical studies
- Pharmacological options
 - Immuno-stimulating
 - Immuno-suppressive
 - Immuno-modulating
- Non-pharmacological treatment options
- Reasons for RCTs failure and future strategies
- Post-sepsis syndrom?
- Conclusions

• No conflict of interest to declare!

Surviving sepsis campaign – additional therapies

Corticosteroids: For adults with septic shock and an ongoing requirement for vasopressor therapy we **suggest** using IV corticosteroids.

• Weak recommendation; moderate quality of evidence

Blood purification: For adults with sepsis or septic shock, we suggest **against** using polymyxin B haemoperfusion.

• Weak recommendation; low quality of evidence

IVIG: For adults with sepsis or septic shock, we suggest **against** using intravenous immunoglobulins

• Weak recommendation, low quality of evidence

Vitamin C: For adults with sepsis or septic shock, we suggest against using IV vitamin C

• Weak recommendation, low quality of evidence.

A Nakamori Y et al.: Immune Deregulation in Sepsis and Septic Shock: Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway. 2021

Excessive inflammation

- release of pro-inflammatory mediators, cytokines & DAMPs
- activation of immune cells, like APCs
- cell injury, NETosis, pyroptosis
- coagulation & complement activation
- activation of endothelium
- loss of barrier function
- microvascular thrombi

Immune suppression

- · release of anti-inflammatory cytokines
- · apoptosis of B cells and T cells
- T cell exhaustion
- · up-regulation of PD-1/PDL1 axis
- · loss of antimicrobial functions of neutrophils
- reprogramming of APCs
- reduced HLA-DR expression
- · expansion of Treg cells and MDSCs

Steinhagen F et al.: Immunotherapy in sepsis - brake or accelerate? Pharmacol Ther. 2020.

From: New Agents in Development for Sepsis: Any Reason for Hope?

Adapted from Azeredo da Silveira S, Shorr AF. Critical parameters for the development of novel therapies for severe and resistant infections-A case study on CAL02, a non-traditional broad-spectrum anti-virulence drug. Antibiotics (Basel). 2020;9(2):94

Inhibition of excessive inflammation

- Blocking TLR-4 receptor (Eritoran) mortality not reduced (n=1961) widrawn from further clinical testing
 - Anti-TLR4 monoclonal Ab phase I testing
- Blocking TNFα (neutralising fusion protein) didn't reduce mortality (1996)
 - Afelimomab (anti-TNF Ab) significant reduction in mortality in subgroup of patients (IL-6 > 1000pg/ml) (2004)
- Blocking IL-1 receptor (rh IL-1RA, Anakinra) non-significant (2-5%) reduction in mortality
 - Retrospective subgroup analysis significant mortality reduction (45,4 vs. 34,3%) in subgroup of patients with baseline (IL-1RA > 2071pg/ml)
 Meyer NJ et al.: Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by

Initial Interleukin-1 Receptor Antagonist Plasma Concentration. Crit Care Med. 2018

• Targeting immuno-thrombosis (activated protein C, drotrecogin alpha) – anti-inflammatory, anti-apoptotic effects – did not reduced mortality.

Non-pharmacological strategies

- Polymyxin B hemoperfusion neutralize LPS, failed to improve survival
- CytoSorb removing PAMPs, DAMPs, cytokines, ..., failed to remove IL-6, organ dysfunction
- Plasma Exchange running RCT (EXCHANGE) -reduces cytokines, improved hemodynamics.

Inhibition of excessive inflammation

Current clinical studies that aim hyperinflammation in sepsis.

Treatment	Target molecule and main action	Clinicaltrials. gov identifier	Primary outcome	Comment
Anakinra	Recombinant human IL-1 receptor antagonist	NCT03332225	28-day mortality	Another study arm receives IFNy in immunosupressive state
Adrecizumab	ADM binding Ab	NCT03085758	safety over a 90-days	Only patients with ADM serum levels >70 pg/mL are recruited (Geven et al., 2019)
Ascorbic acid	- Inhibition of NF-kB activation	NCT02106975	Change in SOFA score at 96 hours	Terminated: no differences in SOFA score (Fowler et al., 2019)
	- Inhibition of HMGB1 release	NCT03680274	28-day mortality and organ failure	None
	 Enhancement of chemotaxis and phagocytosis 	NCT03835286	Vasopressor consumption	None
Hydrocortisone, ascorbic acid and thiamine	- Pleiotropic immuno-modulatory effects e.g.:	NCT03509350	Vasopressor and ventilator-free days	Study protocol also published (Hager et al., 2019)
	- Inhibition of NF-kB and AP-1 activation	NCT03333278	Time alive and free of vasopressors at day 7	study protocol also published (Fujii et al., 2019)
		NCT03380507	60-day mortality	None
	 Inhibition of endothelial and neutrophil 	NCT03540628	2-year mortality	None
	activation	NCT03828929	30-day mortality	None
		NCT03258684	14-day mortality	None
Clarithromycin	Inhibition of NF-kB and IRF3 activation	NCT03345992	28-day mortality	None
Polymyxin B hemoperfusion	Neutralizes LPS by binding lipid A	NCT01046669	28-day mortality	Terminated: no differences in mortality rate (Dellinger et al., 2018)
		NCT01222663	28-day mortality	Terminated: no differences in mortality rate (Paye et al., 2015)
CytoSorb	Elimination of PAMPs, DAMPS and cytokines	NCT29084247	IL-6-serum concentrations	Terminated: no differences in IL-6 levels (Schädler et al., 2017)
Therapeutic plasma exchange	Elimination of pro-inflammatory and replacement of protective molecules	NCT03065751	28-day mortality	Improved hemodynamics in preliminary study (Knaup et al., 2018)

Immune augmentation

- Granulocyte-macrophage colony-stimulating factor (GM-CSF) restores HLA-DR expression, cytokine production – so far not associated with survival benefit
 - Running RCT (GRID) HLA-DR guided GM-CSF therapy (effect on secondary infections)
- Interferon gamma IFNγ promissing clinical results, running RCT
- Mesenchymal stem cells reduces organ injury and mortality in animal models, 2 phase II RCTs running
- Intravenous immunoglobulin (IVIG) results are in-consistent. Meta-analyses of these studies failed to show an overall benefit
 - IgM-enriched immunoglobulin (IVIgM) meta-analysis of nineteen studies showed reduced mortality risk, -RCT is ongoing (monitoring HLA-DR, cytokines, immunoglobulins to sort patients based on therapy effect).
- Immune checkpoint inhibitors Immune checkpoint receptors activate inhibitory pathways that are essential for self-tolerance. → apoptosis, senescence death.
 - PD-1/PD-L1 programmed cell death receptor/ligand. Monoclonal anti-PD-1 Ab nivolumab

Immune augmentation

Current clinical studies that aim immunosuppression in sepsis.

Treatment	Target molecule and main action	ClinicalTrials. gov Identifier	Primary Outcome	Immune Biomarker used to initiate therapy	Comment
GM-CSF	Increases production and activity on neutrophils, macrophages and monocytes	NCT02361528	ICU-acquired infection at D28 or ICU discharge	reduced monocytes HLA-DR levels (< 8000 monoclonal Abs per cell)	
IFNγ	Increases activity of leucocytes	NCT01649921	TNF secretion by LPS-stimulated leukocytes	none	
		NCT03332225	28-day mortality	HLA-DR expression on CD14-monocytes <30%	another study arm receives anakinra in hyperinflam-matory state
IL-7	Promotes lymphocyte proliferation and survival	NCT02640807	Safety and immune reconstitution	≤ 900 lymphocytes/µl	Terminated: well tolerated and >3-fold increase in lymphocyte count (Francois et al., 2018)
IgGAM	Improves pathogen recognition and anti-apoptotic effects	NCT03334006	Improvement of the mean MOF score on day 7	IL-6 levels >1000 pg/ml	
Mesenchymal stem cells	- augmenting bacterial clearance	NCT02421484	Safety and cytokine response	none	Terminated: safe and no exacerbation of elevated cytokine levels (Schlosser et al., 2019)
	- limiting apoptosis	NCT03369275	reduction in days on mechanical ventilation, or renal replacement therapy, or vasopressors	none	
	 enhancing injury repair 	NCT02883803	SOFA score on day 7	none	
anti-PD-L1	Reduces apoptosis and promotes T-cell responses	NCT02576457	Safety and 90-day mortality	≤ 1100 lymphocytes/µl	Terminated: safe and no drug-induced cytokine release syndrome (Hotchkiss et al., 2019)

• Potentially adjunctive treatment for refractory/resistant fungal infections?

A case report:

.

 Immunocompetent host, woman, 30 yo, severe pelvic trauma Refractory mycotic infection despite surgery source control (splenectomy, gastrectomy) and convetional therapy.

Low absolute lymphocyte count, low monocyte HLA-DR expression, and increased expression of programmed death-1 (PD-1) on T-cells

- Immunoadjuvant therapy with interferon-γ (100 μg X3/wk for 5 doses) starting on D28, followed by a single 250 mg dose of nivolumab on D30.
- Subsequent immunological examinations showed increases in absolute lymphocyte count, monocyte HLA-DR expression, and CD8 T-cells, and decreased T-cell PD-1 expression
- Pt improved slowly, and repeat CT scans showed no residual infection,
- D80 discharged from ICU

Immune augmentation

THE LANCET nfectious Diseases	Sup.
CORRESPONDENCE VOLUME 17, ISSUE 1, P18, JANUARY 01, 2017 Nivolumab plus interferon-γ in the treatment of mucormycosis David Grimaldi • Olivier Pradier • Richard S Hotchkiss • Jean-Louis Vincent 🖾 Published: January, 2017 • DOI: https://doi.org/10.1016/S1473-3099(16)30541-2	∎ of intractable

Macrophage activation-like syndrom - MALS

- = Secondary Hemophagocytic lymphohistocytosis (sHLH)
- fulminant cytokine storm and fatal cause of MODS
- Fever, pancytopenia, tissue hemophagocytosis, liver dysfunction, coagulopathy
- uncontrolled activation and proliferation of macrophages, and T lymphocytes, with a marked increase in circulating cytokines, such as IFNgamma, and GM-CSF.
- increased levels of Ferritin, IL-6, IL-18, INF-γ, ...
- H Score

Sepsis (defined as total SOFA score ≥2 points for new admissions or as increase of total SOFA score ≥2 points for hospitalized patients)

HSscore (more than 151 points are needed)	HBD			
	Points	Presence of at least 2 of the following:		
 Infection by HIV or long term immunosuppressive 	18	• Serum bilirubin > 2.5 mg/dl		
treatment e.g., cyclosporine, glucocorticoids,		 Aspartate aminotransferase ≥2 × upper normal limit 	t	
azathioprine		 International normalized ratio (INR) > 1.5 		
Core temperature				
<38.4°C	0			
38.4–39.4°C	1	DIC score (more than 5 points are needed)		
>39.5°C	2		Points	
Organomegaly		 Platelet count (/mm³) 		
Hepatomegaly or splenomegaly	1	<100,000	1	
Hepatomegaly and splenomegaly	2	<50,000	2	
Number of cytopenias		D-dimers		
1 lineage	0	No increase	0	
2 lineages	24	Moderate increase	2	
3 lineages	34	Strong increase	3	
Ferritin (ng/ml)		Prothrombin time		
<2,000	0	<3s	0	
2,000–6,000	35	3-6s	1	
>6,000	50	>6s	2	
 Triglycerides (mmol/l) 		 Fibrinogen (g/l) 		
<1.5	0	>1	0	
1.5–4	44	<1	1	
>4	64			
Fibrinogen (mg/l)				
>2.5	0			
≤2.5	30			
 Serum aspartate aminotransferase (U/I) 				
<30	0			
≥30	19			

DIC, disseminated intravascular coagulation; HBD, hepatobiliary dysfunction; HIV, human immunodeficiency virus; HS, hemophagocytosis; SOFA, sequential organ failure assess <, less than; >, more than; \leq , less than or equal to; \geq , more than or equal to.

Macrophage activation-like syndrom - MALS

- Ferritin levels above 4420 ng/ml
- The frequency of MALS was 3.7% and 4.3%
- MALS was an independent risk factor for 10-day mortality
- less than 15% decrease of ferritin on day 3 was associated with more than 90% sensitivity for unfavorable outcome

RESEARCH ARTICLE

(CrossMark

Macrophage activation-like syndrome: an immunological entity associated with rapid progression to death in sepsis

Evdoxia Kyriazopoulou¹, Konstantinos Leventogiannis¹, Anna Norrby-Teglund², Georgios Dimopoulos³, Aikaterini Pantazi⁴, Stylianos E. Orfanos³, Nikoletta Rovina⁵, Iraklis Tsangaris³, Theologia Gkavogianni¹, Elektra Botsa¹, Eleftheria Chassiou⁶, Anastasia Kotanidou⁷, Christina Kontouli⁸, Panagiotis Chaloulis⁹, Dimitrios Velissaris¹⁰, Athina Savva¹, Jonas-Sundén Cullberg², Karolina Akinosoglou¹⁰, Charalambos Gogos¹⁰, Apostolos Armaganidis³, Evangelos J. Giamarellos-Bourboulis^{1*} on behalf of the Hellenic Sepsis Study Group

- A Trial of Validation and Restoration of Immune Dysfunction in Severe Infections and Sepsis (PROVIDE, NCT03332225) Athens, Greece – recruitment completed, not yet published.
 - 3 arms (Anakinra, Recombinant human interferon-gamma, placebo)

Study Re-analysis

Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of the macrophage activation syndrome: Reanalysis of a prior Phase III trial

B. Shakoory, M.D., J.A. Carcillo, M.D., [...], and S.M. Opal, M.D.

 HBD/DIC group (MAS): patients with severe sepsis who demonstrate BOTH hepatobiliary dysfunction and DIC features

Vanish study re-analysis

Antcliffe et al., 2019 - *Transcriptomic Signatures in Sepsis and a Differential Response to Steroids. From the VANISH Randomized Trial*

 Patients with the SRS2 phenotype had worse mortality when receiving corticoids as part of septic shock treatment

Precision medicine

• Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis. Nat Rev Nephrol. 2019

Prognostic/predictive enrichment

• Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis. Nat Rev Nephrol. 2019

Artificial inteligence

Rakamori Y et al.: Immune Deregulation in Sepsis and Septic Shock: Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway. 2021

Thank you for your attention !

• Special thanks to my:

- Mentors (Šrámek, Prakash, Pařenica)
- Cooperators (Frič, Hortová Kohoutková, Vlková, De Zuani)
- Students (Tomášková, Mýtniková)

MUNT

MED

FAKULTNÍ NEMOCNI U SV. ANN

Anaesthesia Critical Care & Pain Medicine

Available online 20 April 2022, 101068

Editorial Peace, not war in Ukraine or anywhere else, please

Jean-Yves Lefrant ^{a, b} \approx \boxtimes , Romain Pirracchio ^{c, d}, Dan Benhamou ^{e, f}, Marc-Olivier Fischer ^{f, g}, Rosanna Njeim ^h, Bernard Allaouchiche ⁱ, Sophie Bastide ^j, Matthieu Biais ^{k, 1}, Lionel Bouvet ^m, Olivier Brissaud ⁿ, Sorin J. Brull ^o, Xavier Capdevila ^p, Nicola Clausen ^q, Philippe Cuvillon ^r, Christophe Dadure ^s, Jean-Stéphane David ^t, Bin Du ^u, Sharon Einav ^{v, w} ... Hervé Bouaziz ^{ay, az}