

Results from One Year in the Translational Medicine PhD program in Semmelweis University, Hungary

Colours of Sepsis 23-27 January Ostrava

Caner Turan

Centre for translational

MEDICINE

About the speaker

My projects

Perioperative Management and Critical Care for Patients with Liver Dysfunction

Projects under my supervision

Scientific Methodology Supervisor

Caner Turan

Clinical physician

Н

OVERVIEW

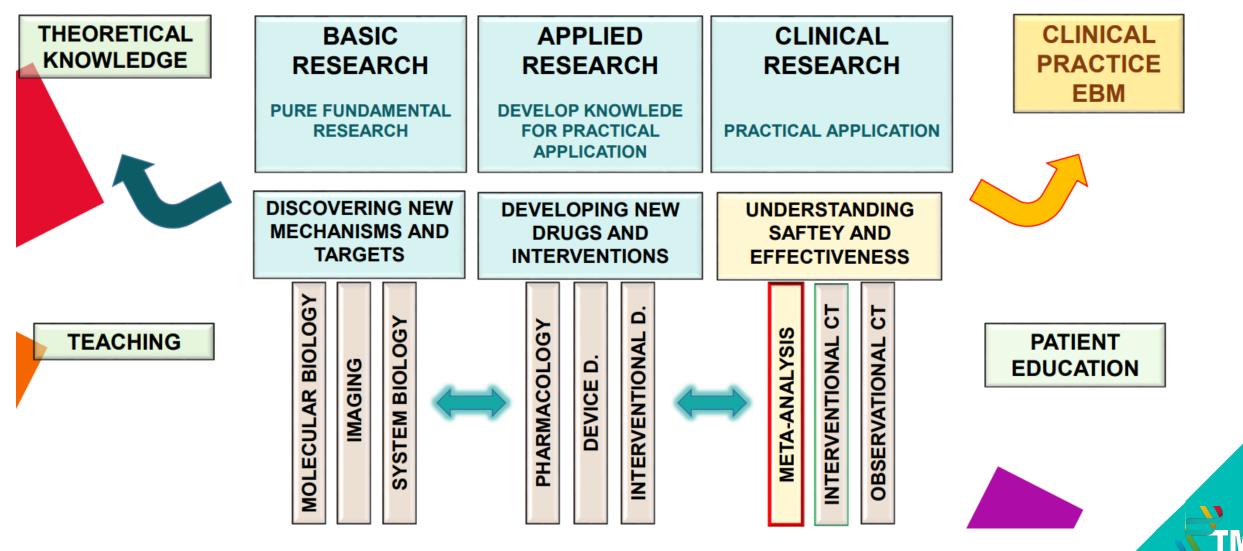
- 1. What is Translational Medicine
- 2. Why we do systematic reviews and meta-analyses
- 3. Workflow of a meta-analysis
- 4. The premise of our studies over this year
- 5. Perioperative management of patients undergoing liver surgery, using glucocorticoid administration
- 6. A novel technology for managing acute liver dysfunction: Hemoadsorption

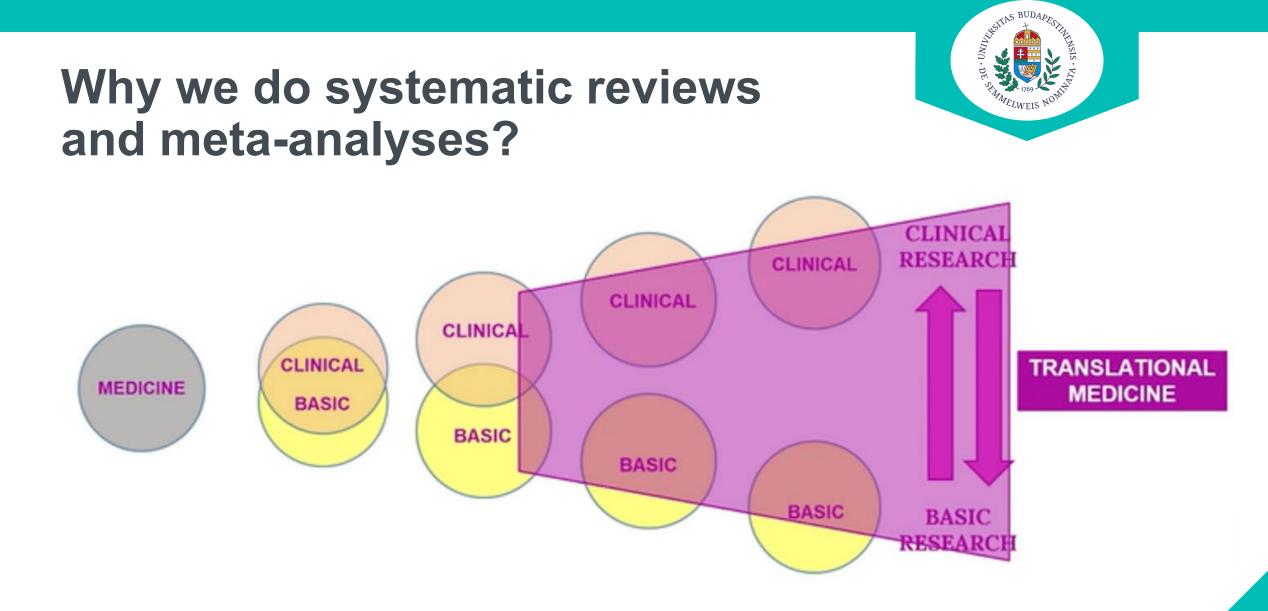
Results from One Year in the Translational Medicine PhD program in Semmelweis University, Hungary

What is Translational Medicine?

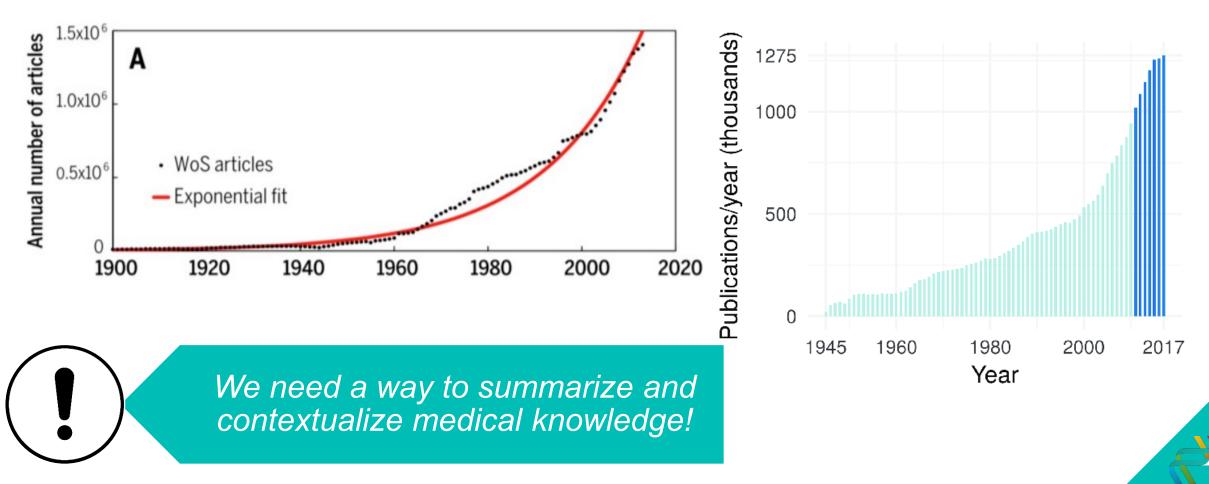
<u>A continuous medical education model</u>

- Hybrid system: to educate healthcare professionals to generate and implement science
 - "Evidence based medicine"
- To equip clinical workers with the necessary ability to question and assess every component of the day to day practice
 - "Scientific thinking at the bedside"
- Disseminates the findings of scientific work abroad, but also at their clinics/departments


<u>A system which integrates all levels of clinical work, and promotes & develops team-working</u>


- Undergraduate students:
 - Scientific Methodology Learners ; project students
 - MD-PhD Program
- Postgraduate trainees / specialists: PhD students, researchers
- Experienced translational medicine practitioners: Scientific Methodology Experts / Supervisors
- Biostatisticians
- Research workers (registry/clinical trial nurses, data and IT specialists, legal experts)

What is Translational Medicine?



Why we do systematic reviews and meta-analyses?

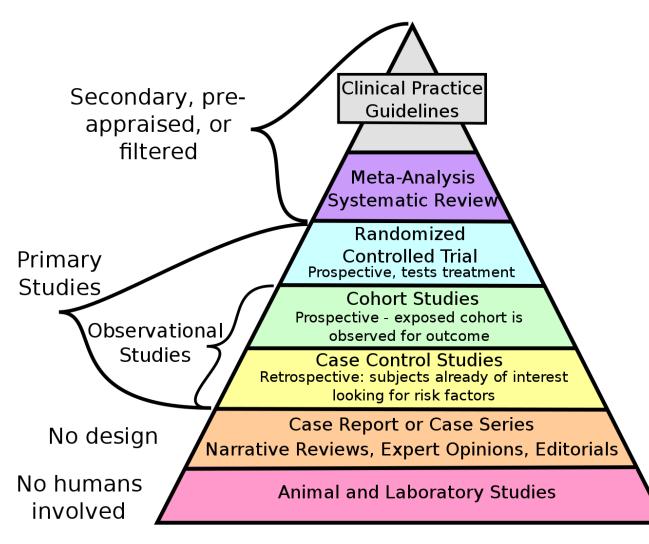
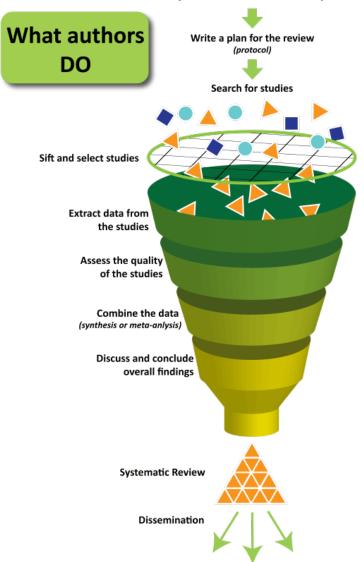
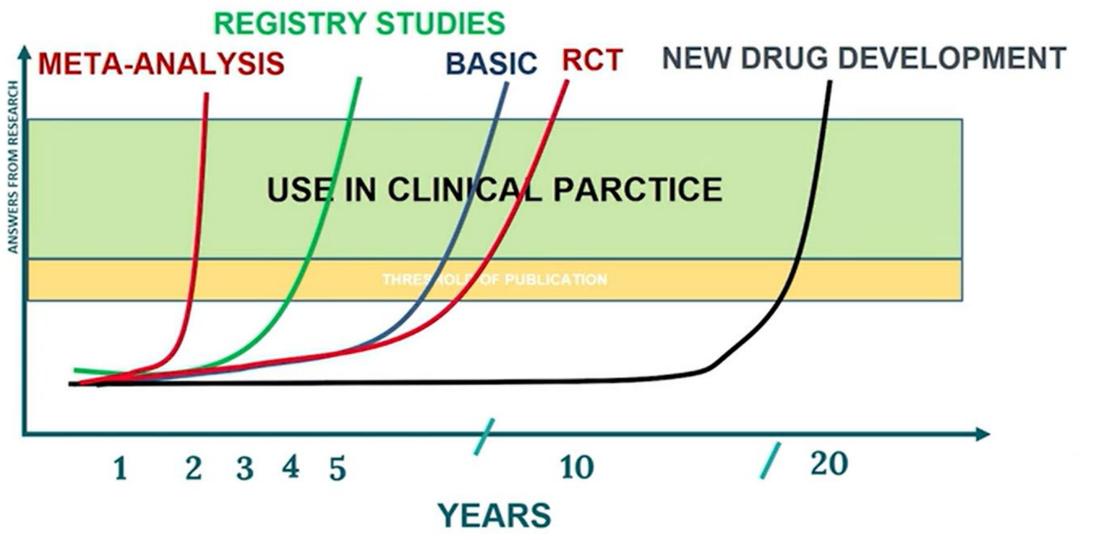


Figure 1. Articles indexed by the Web of Science

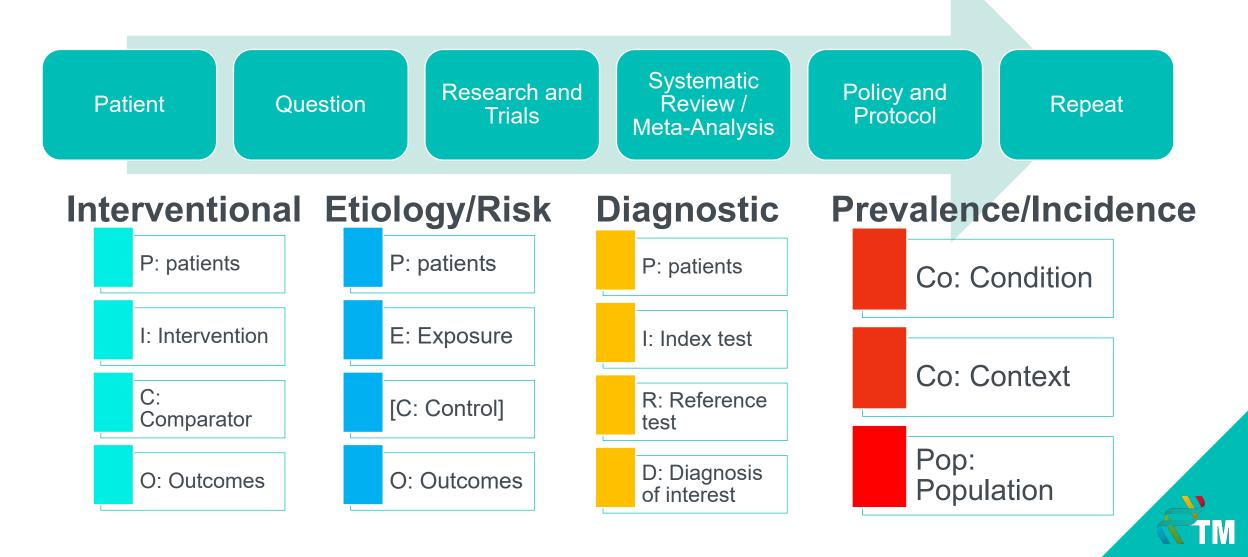
Figure 2. Articles published on PubMed each year



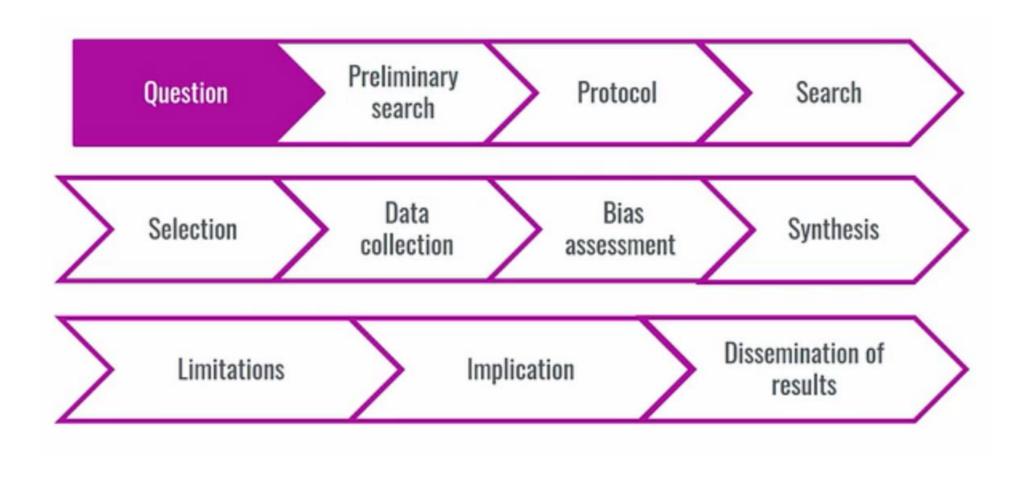
Why we do systematic reviews and meta-analyses?


NUT OF STANKELWEIS NOMINE

Identify the issue and determine the question



Μ


Review Question

NO. DE STAS BUDADESTINA PROVINCIAL DE STARS BUDATESTINA PROVINCIAL DE STARS BUDATESTINO PROVINCIAL DE STARS BUDATESTINO PROVINCI

Workflow of a meta-analysis

NO. DE STAS BUDAPESITIES SUDAPESITIES SUDAPESITIES BUDAPESITIES SUDAPESITIES NOTIFIES

Choosing a topic for research

- Emergent health concern calls for investigation
- There are gaps in the guidelines
- There are "known unknowns"
- Contradictory alternatives exist in clinical practice
- "Habit" in clinical practice precedes rational "justification"

Choosing a topic for research

► is for Feasibility

• Avoid "empty" reviews; if data is unavailable, consider primary research

is for Interesting

• Not only for the researcher, but also the partners in healthcare

N is for Novel

• Don't duplicate effort; contribute meaningful work

L is for Ethical

• The purpose and the goal of the review must be fall in line with medical ethics

${\sf R}$ is for Relevant

• Involve the partners; we are writing the article for them after all!

Our methodology in action

Preoperative steroid administration for major liver surgery

Guideline

Systematic

Review

• **Previous clinical trials**: Conflicting results need quantitative & qualitative synthesis

• ERAS Guideline: Weak recommendation Moderate evidence level Hemadsorption therapy for critical illness with acute liver dysfunction

Guideline

• Clarification of further research required

• Efficacy in reducing postoperative complications

Feasibility in clinical practice

Our methodology in action

Preoperative steroid administration for major liver surgery

results need quantitative & qualitative synthesis

Guideline

Review

• ERAS Guideline: Weak recommendation Moderate evidence level

Hemoadsorption therapy for critical illness with acute liver dysfunction

• Summary of evidence

Systematic Review

Guideline

 Contextualization of practical experience

Efficacy in reducing postoperative complications

Previous clinical trials: Conflicting

Systematic • Feasibility in clinical practice • Establishing guidance for clinical practice

 Clarification of further research required

The Effect of Preoperative Administration of Glucocorticoids on the Postoperative Complication Rate in Liver Surgery: a systematic review and meta-analysis

<u>The Problem</u>

Postoperative complication rates for patients undergoing major liver surgery is unacceptably high (~48% complication rate, ~20% mortality) [1]

<u>What we know</u>

Glucocorticoids may be effective in protecting against dysregulated immune response [2]

The missing link

Earlier meta-analyses and clinical trials have contradictory results and recommendations; stronger evidence is needed before implementation into clinical practice

References:

1. Current concepts in acute liver failure, Rovegno et al. 2019, Annals of Hepatology

2. Effective prediction of postoperative complications for patients after open hepatectomy: a simplified scoring system based on perioperative parameters, Chen et al. 2019, BMC Surgery

Liver surgery can still be dangerous for patients Postoperative **Mortality Complications** 20% 48%

Background

Cause

- Operative stress
- Injury to liver parenchyma
- Dysregulated immune response

Solution?

Immune modulation => Steroids

Premise

ERAS Society Guidelines 2016 Evidence: Moderate Grade of recommendation: Weak

2014: Non-significant2015: Non-significant2019: Non-significant2021: Significant

Research Question

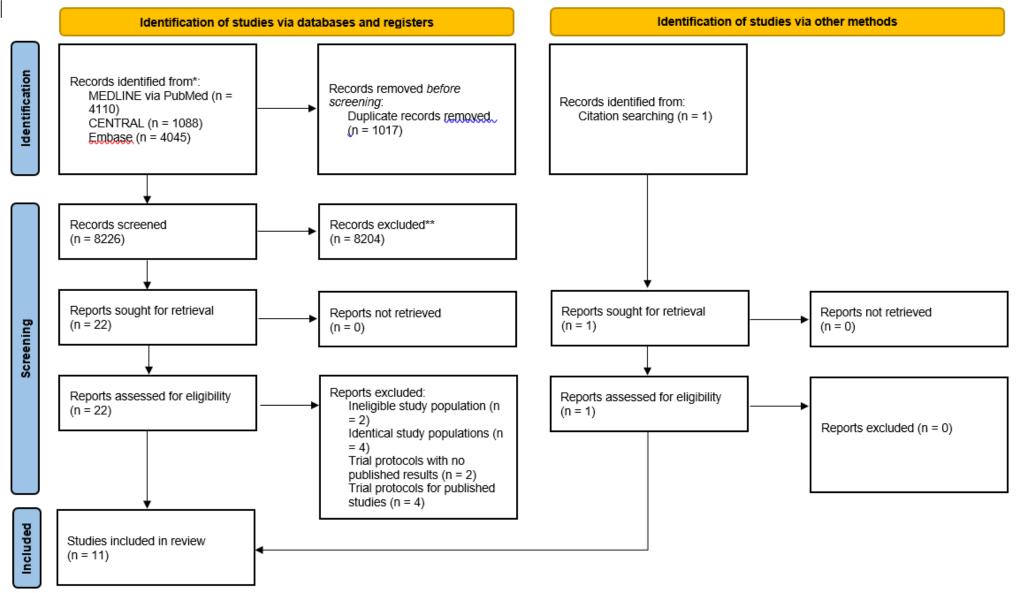
Does preoperative administration of glucocorticoids in liver surgery decrease postoperative complication rates?

- P Patients undergoing liver resections or transplantation
- Preoperative administration of glucocorticoids (any modality)
- **C** Control group (placebo or non-administration)
- O Primary: overall postoperative complication rate Secondary: intraoperative outcomes, postoperative liver function, length of hospital stay

Hypothesis: Administration of glucocorticoids for patients undergoing liver surgery will reduce the overall postoperative complication rates as opposed to the administration of placebo.

Systematic search

Databases: Medline (4110), Embase (2314), Central (1088)


Date of search: October 15, 2021

Searchkey:

(((hepatic **OR** liver) **AND** (surgery **OR** resection **OR** operation **OR** intervention)) **OR** hepatectomy) **AND** (steroid **OR** corticosteroid **OR** glucocorticoid **OR** methylprednisolone **OR** hydrocortisone **OR** cortisol) **AND** random*

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources

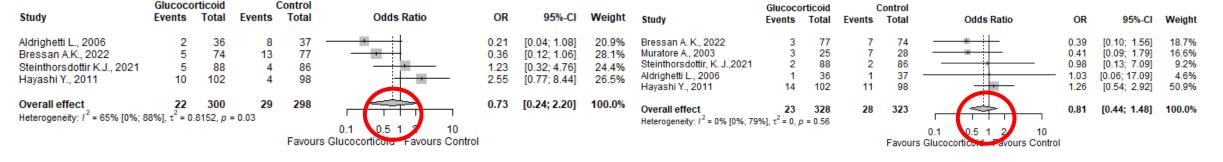
SASTAS BUDAPESAL

*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers). **If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools.

From: Page MJ, McKenzie JE, Bossuxt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit: http://www.prisma-statement.org/

Overall postoperative complication rate

	Glucoco	rticoid	(Control				
Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI	Weight
Aldrighetti L., 2006	5	37	20	36		0.13	[0.04; 0.39]	10.7%
Hasegawa Y., 2019	11	50	20	50		0.42	[0.18; 1.02]	13.7%
Bressan A.K., 2022	24	74	35	77		0.58	[0.30; 1.12]	16.3%
Schmidt S.C., 2007	2	10	3	10		0.58	[0.07; 4.56]	5.0%
Steinthorsdottir K.J., 2021	19	88	19	86		0.97	[0.47; 1.99]	15.6%
Yamashita Y., 2001	2	17	2	17		1.00	[0.12; 8.06]	4.9%
Hayashi Y., 2011	42	98	41	102	÷ •	1.12	[0.64; 1.96]	17.6%
Donadon M., 2016	3	16	2	16		1.62	[0.23; 11.26]	5.5%
Muratore A., 2003	12	28	7	25		1.93	[0.61; 6.09]	10.7%
Overall effect	120	418	149	419		0.71	[0.38; 1.31]	100.0%
Heterogeneity: / ² = 54% [2%; 7	78%], τ ² = 0.	3212, p =	= 0.03		1 1 1 1 1			
					0.1 0.5 1 2 10			
				Favour	s Glucocorticoid Favours Control		OR	= 0.71
							n=	0.23
								0.20



Postoperative complications

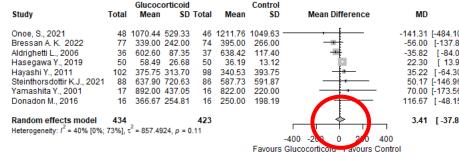
Septic/Infectious Complications

Bile Leakage

Liver Failure

Study	Glucoco			Control Total	Odds Ratio	0.0	0.5% CI	Weight		Glucoco		(Control				
Study	Events	Total	Events	Total	Ouus Rauo	OR	95%-CI	Weight	Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI	Weight
Aldrighetti L., 2006	0	36	1	37		0.33	[0.01; 8.43]	3.3%	Hayashi Y., 2011	1	102	3	98		0.31	[0.03; 3.07]	8.8%
Hayashi Y., 2011	3	102	5	98		0.56	[0.13; 2.42]	16.4%	Aldrighetti L., 2006	2	36	4	37		0.49	[0.08; 2.83]	14.6%
Yamashita Y., 2001	0	17	0	16		1.00	[0.02; 53.46]	2.2%	Bressan A.K., 2022	1	77	1	74		0.96	[0.06; 15.64]	5.9%
Schmidt S.C., 2007	1	10	1	10		1.00	[0.05; 18.57]	4.1%	Yamashita Y., 2001	0	17	0	16		1.00	[0.02; 53.46]	2.9%
Onoe S., 2021	20	48	18	46		1.11	[0.49; 2.53]	51.3%	Onoe S., 2021	29	48	25	46		1.28	[0.57; 2.91]	67.9%
Bressan A.K., 2022	4	77	3	74		1.30	[0.28; 6.00]	14.9%									
Steinthorsdottir K.J., 2021	7	88	1	86	I	7.35		7.8%	Overall effect	33	280	33	271		0.96	[0.49; 1.88]	100.0%
									Heterogeneity: /2 = 0% [0	%; 79%], τ* =	0, p = 0.3	74					
Overall effect	35	378	29	367		1.12	[0.59; 2.13]	100.0%					F	0.1 0.5 1 2 10			
Heterogeneity: $I^2 = 0\%$ [0%; 719	2												Favours	s Glucocorticold Favours Control			
fictorogeneity. 7 = 0 % [0 %, 7 f	, u = 0, j	0 - 0.01			0.1 0.51 2 10												
				Fourier	Clussestissid Fousure Control												

Favours Glucocorticoid Favours Control


Wound Infections

Study	Glucoco Events	rticoid Total	C Events	Control Total	Odds Ratio	OR	95%-CI	Weight
Aldrighetti L., 2006	0	36	2	37		0.19	[0.01; 4.20]	3.4%
Schmidt S.C., 2007	0	10	1	10		0.30	[0.01; 8.33]	2.9%
Yamashita Y., 2001	0	17	1	16		0.31	[0.01; 7.85]	3.0%
Bressan A.K., 2022	3	77	6	74		0.46	[0.11; 1.91]	15.8%
Onoe S., 2021	2	48	3	46		0.62	[0.10; 3.91]	9.5%
Hayashi Y., 2011	10	102	12	98		0.78	[0.32; 1.90]	40.5%
Steinthorsdottir K.J., 2021	6	88	7	86		0.83	[0.27; 2.56]	24.9%
Overall effect	21	378	32	367	÷	0.64	[0.45; 0.92]	100.0%
Heterogeneity: / ² = 0% [0%; 71	1%], τ ² = 0,	p = 0.95			0.01 0.1 1 10 10	0		
					s Glucocorticoid Favours Contro)I (OR = 0.6 o= 0.02	4

Perioperative outcomes

Length of Hospital Stay

95%-CI Weight

		Glacoc	oracola			Control				
Study	Total	Mean	SD	Total	Mean	S D	Mean Difference	MD	95%-CI	Weight
Aldrighetti L., 2006	36	395.59	51.94	37	421.05	61.05		-25.46	[-51.89; 0.96]	22.4%
Onoe, S., 2021	48	511.15	141.74	46	534.85	136.93 -		-23.70	[-80.78; 33.39]	6.4%
Yamashita Y., 2001	17	338.00	86.59	16	352.00	56.00		-14.00	[-65.47; 37.47]	8.1%
Steinthorsdottir K.J., 2021	88	163.50	73.60	86	161.80	65.70		1.70	[-19.17; 22.57]	29.7%
Donadon M., 2016	16	385.83	88.05	16	378.33	117.21		7.50	[-67.35; 82.35]	4.1%
Hasegawa Y., 2019	50	227.03	94.44	50	216.28	86.06		10.76	[-25.10; 46.62]	14.2%
Hayashi Y., 2011	102	348.78	133.50	98	327.44	112.59		21.35	[-13.04; 55.73]	15.0%
Random effects model	357			349				-2.82	[-19.46; 13.83]	100.0%
Heterogeneity: $I^2 = 6\% [0\%; 7]$	73%]. p	= 0.38								
							-50 0 50			
						Favours (Glucocortico, L. Ferrours Contro	ol –		

Blood Transfusions

Blood Loss

	Glu		rticoid		c	ontrol			
Study	Total I	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-Cl Weigh
Aldrighetti L., 2006	36	7.60	4.01	37	10.95	7.98	-+-	-3.34	[-6.28;-0.41] 2.5%
Hasegawa Y., 2019	50	9.71	4.57	50	10.06	5.33	+	-0.35	[-2.32; 1.62] 5.4%
Steinthorsdottir K.J., 2021	88	4.49	2.22	86	4.73	1.59	4	-0.24	[-0.82; 0.34] 62.5%
Donadon M., 2016	16	8.83	1.42	16	8.67	1.13	÷	0.17	[-0.76; 1.09] 26.1%
Yamashita Y., 2001	17 1	19.20	7.42	16	17.80	6.40	_ +_	1.40	[-3.51; 6.31] 0.9%
Muratore A., 2003	25 1	13.40	19.10	28	11.60	7.50	 +	1.80	[-6.38; 9.98] 0.3%
Hayashi Y., 2011	102 1	17.27	14.17	98	14.19	6.62	⊢ +-	3.07	[0.01; 6.14] 2.2%
Onoe, S., 2021	48 4	45.85	69.41	46	34.11	37.00		- 11.74	[-10.92; 34.39] 0.0%
Random effects model	382	,		377				-0.12	[-0.81; 0.58] 100.0%
Heterogeneity: I ² = 38% [0%;	73%], τ΄	^c = 0, p	= 0.12						
							-30 -20 10 0 10 20 30		
					F	avours	Glucocortice of Favours Contr	ol	

	Glucoco	rticoid	(Control				
Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI	Weight
Bressan A.K., 2022	3	77	8	74		0.33	[0.09; 1.31]	13.6%
Onoe S., 2021	17	48	16	46		1.03	[0.44; 2.40]	35.4%
Steinthorsdottir K.J., 2021	13	88	10	86		1.32	[0.54; 3.19]	32.5%
Muratore A., 2003	7	25	6	28		1.43	[0.41; 5.01]	16.1%
Hasegawa Y., 2019	1	50	0	50		3.06	[0.12; 76.95]	2.4%
Overall effect Heterogeneity: / ² = 0% [0%; 79	41 %], τ ² = 0, μ	288 0 = 0.46	40	284	0.1 0.51 2 0	1.04	[0.63; 1.71]	100.0%
				Favours	s Glucocortic id Favours Control			

Total Operative Time

Control

Glucocorticoid

AND APESTAN BUDAPESTAN

WELWEIS

Laboratory Outcomes

Article	Study Type	Treatment Used	Treatment Dosage	Patients, control / intervention (#)	Total Bilirubin	ALT	AST	IL-6	CRP	РТТ	
Onoe, S 2021	RCT	Hydrocortisone	500 mg immediately before hepatic pedicle clamping followed by 300 mg on POD 1, 200 mg on POD 2, and 100 mg on POD 3	46/48	Ð	Ð	8		$ \mathbf{ + } $		Significant Improvement
Steinthorsdottir, K. J. 2021	RCT	Methylprednisolone	10 mg/kg	86/88	Œ	Ξ	_			Œ	Improvement
Bressan, A. K. 2022	RCT	Methylprednisolone	500 mg IV pre-operatively	74/77	(+)	8	8			Œ	8
Hasegawa, Y. 2019	RCT	Methylprednisolone	500 mg IV pre-operatively	50/50	(+)	-	-		(+)	(+)	No Significant Improvement
Donadon, M. 2016	RCT	Methylprednisolone	500 mg pre-operatively	16/16							improvolnom
Hayashi, Y. 2011	RCT	Hydrocortisone	500 mg immediately before hepatic pedicle clamping followed by 300 mg on POD 1, 200 mg on POD 2, and 100 mg on POD 3	98/102	Ð	8	8	Ð		lacksquare	
Yamashita, Y. 2001	RCT	Methylprednisolone	500 mg pre-operatively	16/17	(+)			(+)			
Muratore. A. 2003	RCT	Methylprednisolone	30 mg/kg	28/25	Ξ	Ξ	Ξ	(+)		Ξ	
Aldrighetti, L. 2006	RCT	Methylprednisolone	500 mg pre-operatively	36/37	(+)	(+)	(+)	(Ŧ)		$\overline{\mathbf{+}}$	
Schmidt, S.C. 2007	RCT	Methylprednisolone	30 mg/kg	10/10	$\overline{\mathbf{+}}$	B	\smile	$\overleftarrow{\mathbf{H}}$	(+)	Ħ	
Turner, S. 2006	RCT	Methylprednisolone	10 mg/kg	17/17		$\overline{\bullet}$		$\mathbf{}$			P TM

Overall postoperative complication rate Risk of Bias

ve complic	ation	rate	:		ŧ			
as Study ID	Randomization process	Deviations from intended interventions	Missing outcome data	Measurement of the outcome	Selection of the reported result	Overall		
Yamashita 2001	•	?	•	•	•	!	•	Low risk
Muratore 2002	•	•	•	•	•	•	?	Some concerns
Aldrighetti 2006	•	•	•	•	•	•	-	High risk
Turner 2006	•	•	•	•	•	•		
Schmidt 2007	•	•	•	•	•	•		
Hayashi 2011	•	•	•	•	•	•		
Donadon 2016	•	•	•	•	•	•		
Hasegawa 2019	•	•	•	•	•	•		
Steinthorsdottir 20	21+	?	•	•	•	!		
Onoe 2021	•	•	•	•	•	•		
Bressan 2022	•	•	•	+	•	+		

Стм

AND APESTIAN BUDAPESTIAN

MELWEIS NO

GRADE Assessment

				Anticipated absolute	e effects
Outcomes	№ of participants (studies) Follow-up	Certainty of the evidence (GRADE)	Relative effect (95% Cl)	Risk with control	Risk difference with preoperative glucocorticoid
Overall postoperative complication rate (PostOp Comp.) assessed with: # (%)	837 (9 RCTs)	⊕⊕⊕⊖ Moderateª	OR 0.71 (0.38 to 1.31)	370 per 1,000	76 fewer per 1,000 (188 fewer to 65 more)
Septic/Infectious Complications (septic) assessed with: # (%)	598 (4 RCTs)	⊕⊕⊕⊕ High	OR 0.73 (0.24 to 2.20)	97 per 1,000	24 fewer per 1,000 (72 fewer to 94 more)
Wound Infection (wound) assessed with: # (%)	745 (7 RCTs)	⊕⊕⊕⊕ High	OR 0.64 (0.45 to 0.92)	87 per 1,000	30 fewer per 1,000 (46 fewer to 6 fewer)
Bile Leakage (bile) assessed with: # (%)	735 (7 RCTs)	⊕⊕⊕⊕ High	OR 1.10 (0.57 to 2.13)	81 per 1,000	7 more per 1,000 (33 fewer to 77 more)
Pleural Effusion (pleura) assessed with: # (%)	651 (5 RCTs)	⊕⊕⊕⊕ High	OR 0.81 (0.44 to 1.48)	87 per 1,000	15 fewer per 1,000 (47 fewer to 36 more)
All Grades Liver Failure (liver fail) assessed with: # (%)	518 (4 RCTs)	⊕⊕⊕⊕ High	OR 0.96 (0.48 to 1.90)	129 per 1,000	5 fewer per 1,000 (63 fewer to 91 more)
Length of Hospital Stay (LOHS) assessed with: days	759 (8 RCTs)	⊕⊕⊕⊕ High		The mean length of Hospital Stay was 0	MD 0.12 lower (0.57 lower to 0.34 higher)
Total Operative Time (op.time.) assessed with: minutes	706 (7 RCTs)	⊕⊕⊕⊕ High	-	The mean total Operative Time was 0	MD 2.82 lower (19.46 lower to 13.83 higher)
Blood Loss (blood loss) assessed with: ml	857 (8 RCTs)	⊕⊕⊕⊕ High		The mean blood Loss was 0	MD 3.41 higher (33.33 lower to 40.16 higher)
Blood Transfusion (transfusion) assessed with: # (%)	572 (5 RCTs)	⊕⊕⊕⊕ High	OR 1.04 (0.63 to 1.71)	141 per 1,000	5 more per 1,000 (47 fewer to 78 more)

Conclusion

- Preoperative glucocorticoid administration does not significantly reduce overall complication rate (p=0.23).
- There are no statistically significant differences between particular complications, nor length of hospital stay.
- Level of currently available evidence is insufficient to draw any conclusions regarding the use of glucocorticoids in liver surgery.

Summary

Implication for practice

• Recently made recommendations by reviewers[1] and trialists[2], advocating for the use of glucocorticoids need to be reconsidered in light of new evidence.

Implication for research

- This intervention remains an important field of research considering the high risk of liver surgery and the conflicting results in the literature.
- Based on this systematic review, new clinical trials with robust designs can fill in the gaps of knowledge without repeating the same efforts over and over again.

1. Perioperative steroid administration reduces overall complications in patients undergoing liver resection: A meta-analysis, Hao-Han et al. 2021, *World Journal of Surgery* 2. Preoperative Single-Dose Methylprednisolone Prevents Surgical Site Infections After Major Liver Resection: A Randomized Controlled Trial, Bressan et al., 2022, *Annals of Surgery*

Summary

Strengths

- Only randomized controlled trials were included in the study
- Largest patient pool to date on the subject
- Most broad range of outcomes analyzed on the subject
- Fully compliant with international standards for systematic reviews (Cochrane & EQUATOR Network)

Limitations

- We could not perform subgroup analyses due to poor data availability
- We could not perform meta-analysis on part of our secondary outcomes due to poor data availability

Our methodology in action

Preoperative steroid administration for major liver surgery

Guideline

Systematic

Review

• **Previous clinical trials**: Conflicting results need quantitative & qualitative synthesis

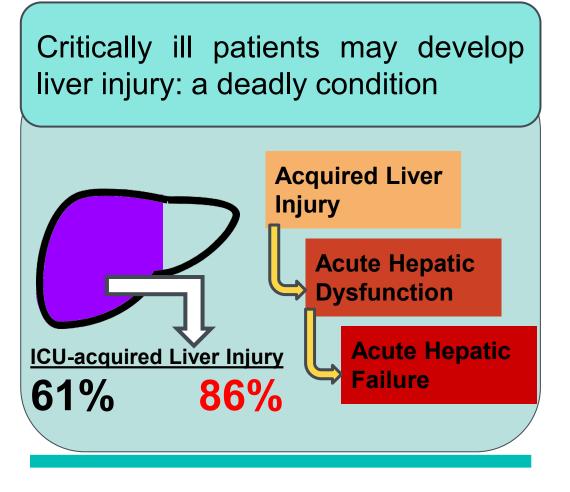
• ERAS Guideline: Weak recommendation Moderate evidence level Hemoadsorption therapy for critical illness with acute liver dysfunction

• Summary of evidence

Systematic Review

Guideline

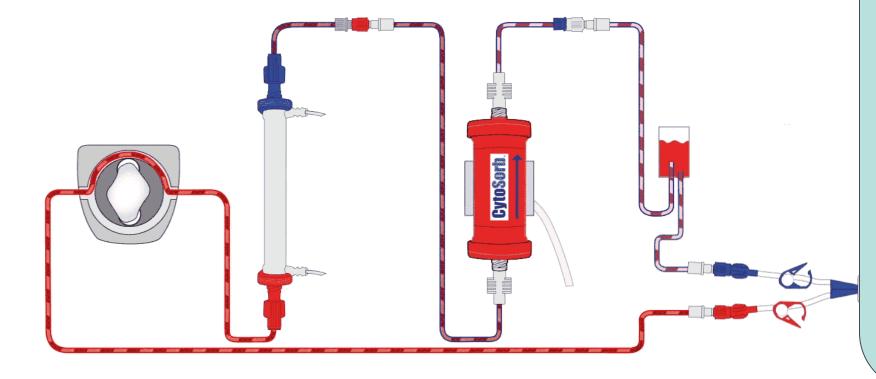
Contextualization of practical experience


Efficacy in reducing postoperative complications

Feasibility in clinical practice

 Establishing guidance for clinical practice

 Clarification of further research required


Background

Treatment options

- 1. Management of complications
 - a. Metabolic abnormalities
 - b. Hepatic encephalopathy
 - c. MODS
 - d. Hemodynamic management
- 2. Bridging to liver transplantation
- 3. Life support

Hemoadsorption: a novel strategy

NO. DE SELWEIS NOMINE

- 1. Cytokine adsorption
- 2. Absorption of Inflammatory mediators
- 3. Reducing bilirubin and other molecules
- 4. Improvement of liver and kidney functions

Bridging to transplant

Research Question

Does hemadsorption therapy effectively reduce the levels of cytokines and liver function related metabolites in critically ill patients with acquired liver injury and lead to better clinical outcomes?

- P Adult critically ill patients with acquired liver injury
- Hemadsorption therapy
- **C** Standard care without hemadsorption
- Primary: mortality; liver function, cytokine levels

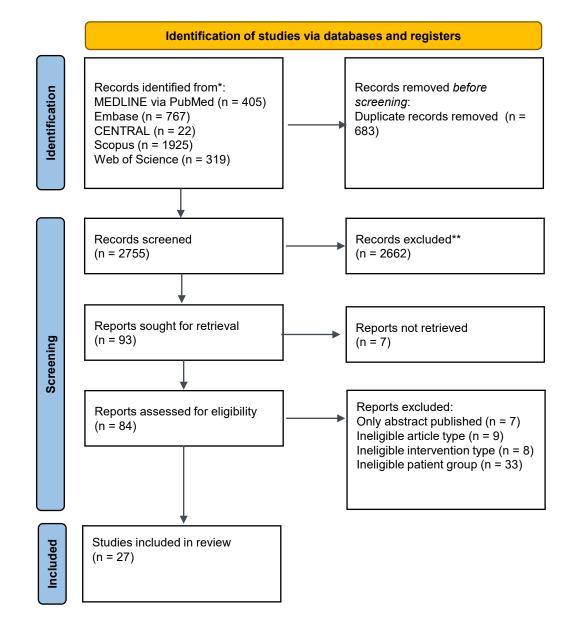
Secondary: bridge to transplantation/recovery, change in vital organ functions, safety outcomes, liver function parameters, length of ICU and hospital stay, mortality

Hypothesis: Hemoadsorption is effective in reducing the circulating cytokines and other inflammatory mediators, improving clinical outcomes

Systematic search

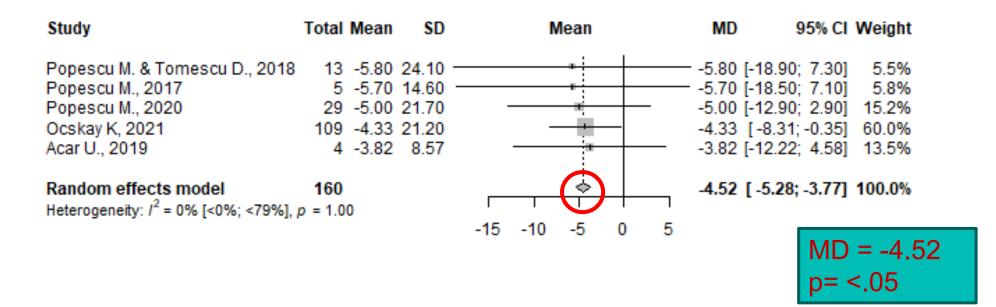
Databases: Medline (405), Embase (767), Central (22), Scopus (1925), Web of Science (319)

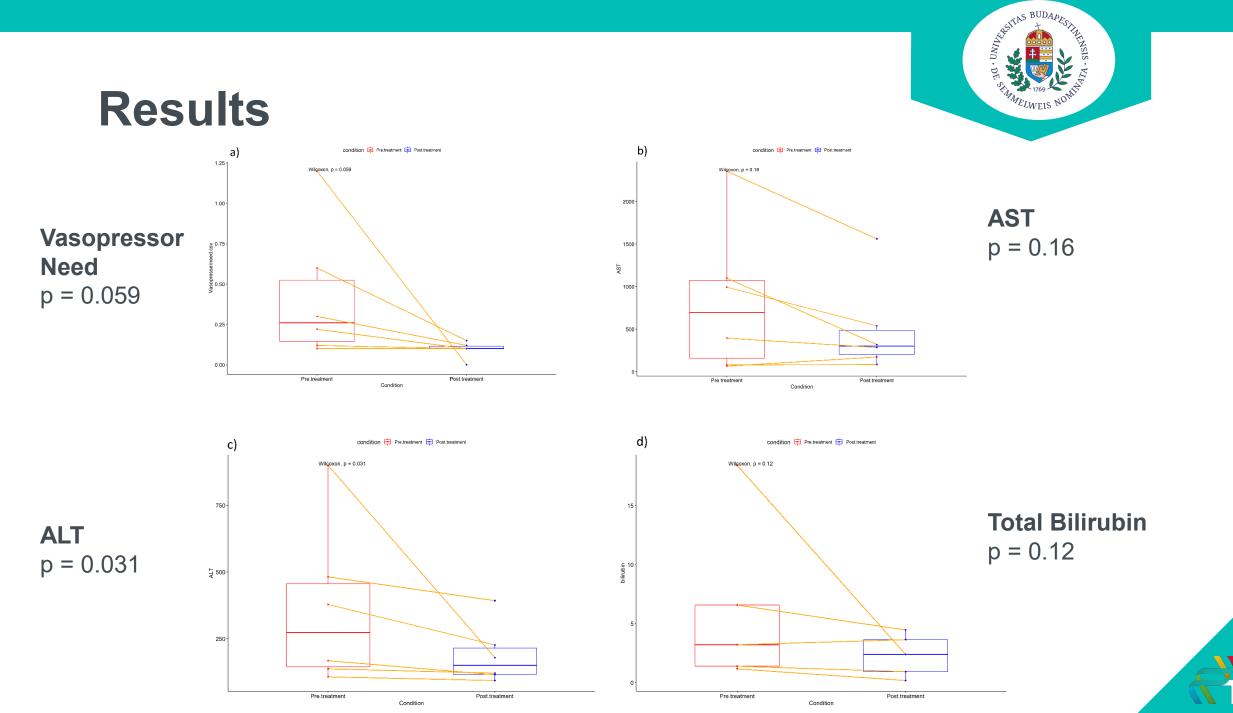
Total search result: 3417


Date of search: November 21 2021

Searchkey:

(oXiris **OR** Jafron **OR** CytoSorb **OR** hemadsorption **OR** hemoadsorption **OR** "blood purification" **OR** "cytokine removal") **AND** (liver failure **OR** "liver injury" **OR** liver dysfunction **OR** liver impairment **OR** "hepatocellular injury" **OR** hepatic insufficiency **OR** hepatic dysfunction **OR** "acquired liver injury" **OR** "hepatic encephalopathy")




Results

Post-treatment Total Bilirubin (mg/dL)

Conclusion

• Hemoadsorption was safe to use (device related complications)

The use of hemoadsorption yielded a trend towards improved liver function

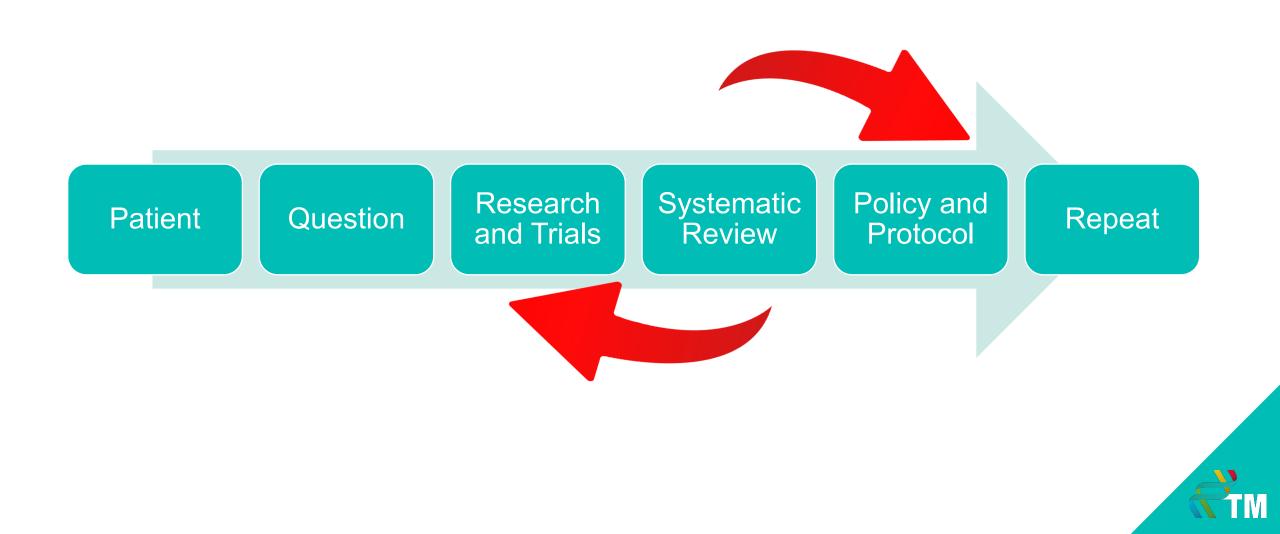
• The quality of clinical literature is insufficient in precision and comprehensiveness

Summary

Implication for practice

• In cases of ICU-acquired liver injury, the use of hemoadsorption therapy is safe and may improve liver function.

Implication for research


• Our results render the need for adequately designed clinical trials with the parameters investigated in this systematic review as main outcomes.

Perioperative steroid administration reduces overall complications in patients undergoing liver resection: A meta-analysis, Hao-Han et al. 2021, World Journal of Surgery
 Preoperative Single-Dose Methylprednisolone Prevents Surgical Site Infections After Major Liver Resection: A Randomized Controlled Trial, Bressan et al., 2022, Annals of Surgery

Implications of our work

Clinical Trial Design

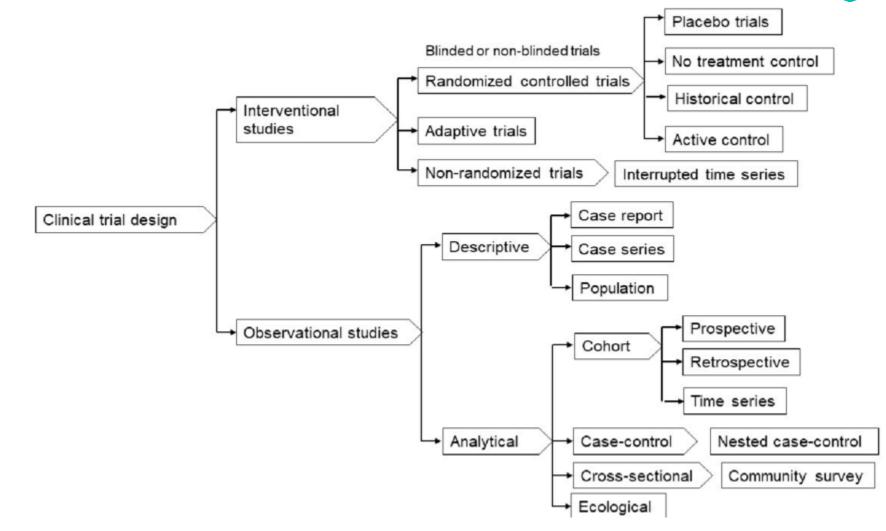
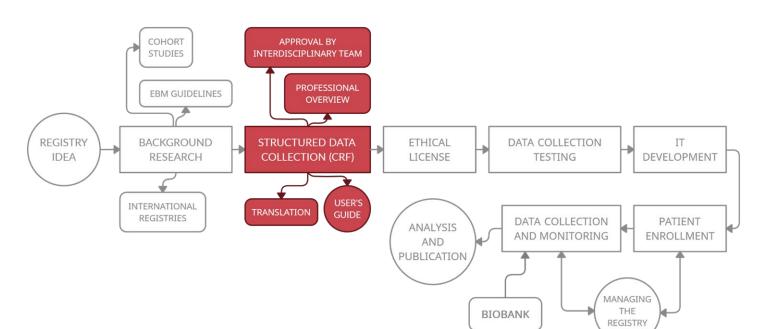


Figure credit: Vennu, V. et al, India's Clinical Trial Regulatory Changes, Indian Researcher's Awareness of Recently Changed Regulations, and the Impact of the New Drugs and Clinical Trial Rules: A Review, Indian Journal of Pharmaceutical Sciences

NO. DE SELANDELWEIS NOMINE


Registry Design

Case report forms

- Definition
- Design & Structure
- Types of questions and answers

Process up until IT development

- Approval by registry coordinator and interdisciplinary team
- National and international review
- Translation
- Testing before development

Thank you for your attention!

