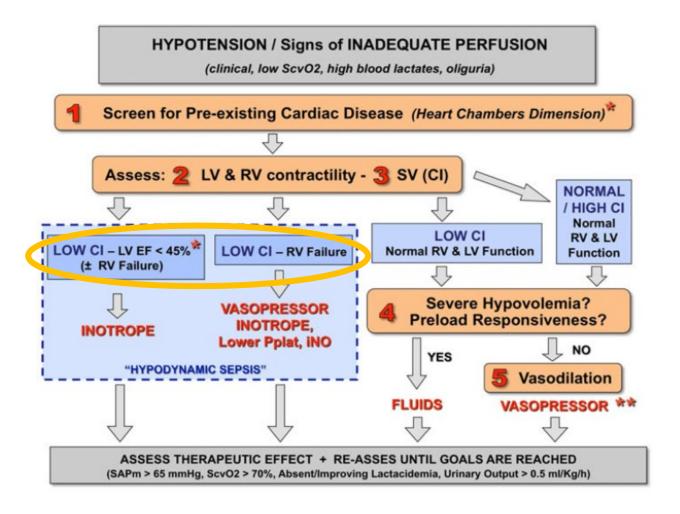

Pravostranné selhání v intenzivní péči

Martin Balík

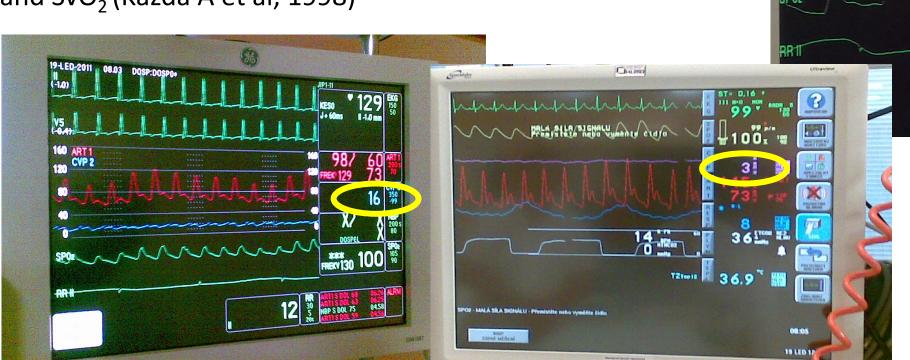
KARIM VFN a 1.LF UK Praha

e-mail: martin.balik@vfn.cz


RV physiology

- Lower O₂ requirement than the LV less myocardial mass
- Perfusion via 2/3 RCA, 1/3 LCA
- RV perfused in both systolic and diastolic phases (unlike LV)
- Wraps around LV
- 25% of contraction generated by LV

N Engl J Med 2023;388:1111-25. DOI: 10.1056/NEJMra2207410


RV is sensitive to preload changes over time

- Manifests during haemodynamic instability due to other causes (IPPV, sepsis...)
- Risk of haemodynamic collapse during <u>rapid</u> volume expansion in preexisting RV dysfunction on IPPV
- SSC 30 ml/kg over 3h.....?!

Importance of CVP (and pressure curve)

- 1.) Diagnosis of obstructive shock
- 2.) Right heart:
 - Significant TR
 - RV function and response to fluids
- 3.) Dynamic monitoring of fluid challenge
- 4.) $ScvO_2$, $cvpO_2$ ($cvpO_2$ correlates better with $cvpO_2$ than $ScvO_2$ and SvO_2 (Kazda A et al, 1998)

08.40 DOSP:DOSPO

IVC diameter: RV and preload

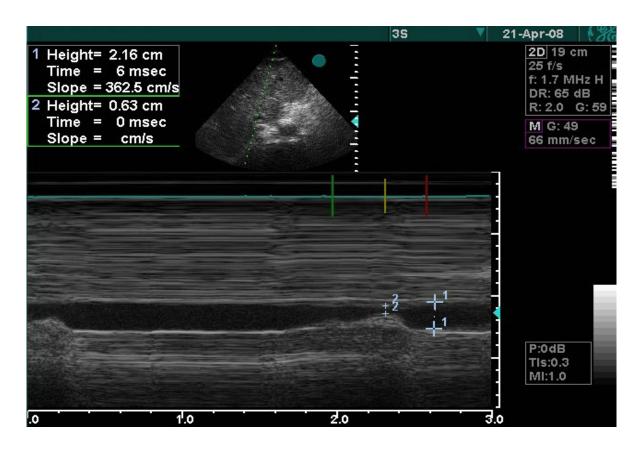
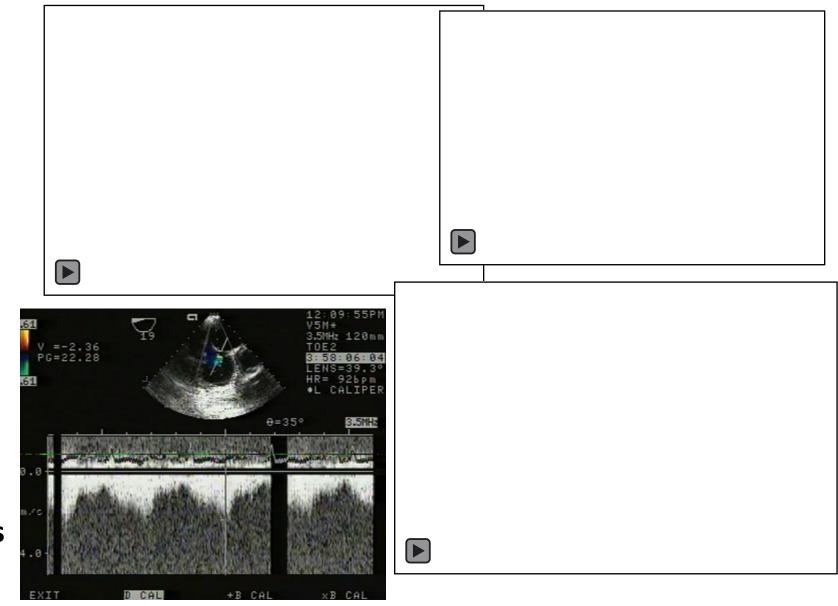
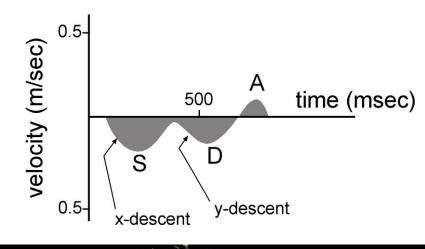


TABLE 33-3. Right Atrial Pressure Estimation from Inferior Vena Caval Diameter

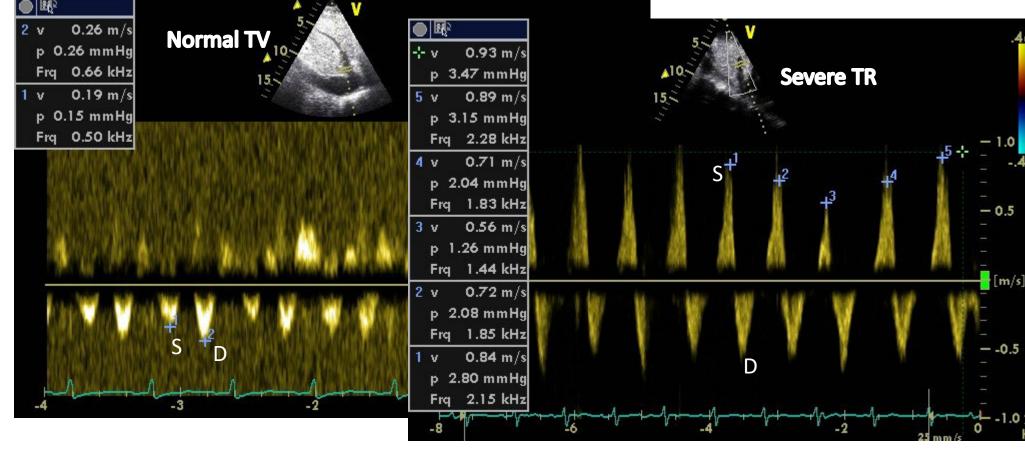

Inferior Vena Caval	Diameter Change	Right Atrial Pressure
Diameter	with Inspiration	Estimate, mm Hg
Small (<1.5 cm)	Collapse	0-5
Normal (1.5 to 2.5 cm)	>50% decrease	5-10
Dilated (>2.5 cm)	<50% decrease	10-15
Dilated inferior vena cava and hepatic veins	No change	>20

Otto C: Practice of Clinical Echocardiography, 2012

IVC collapse of at least -13% in inspirium (mandatory IPPV) predicts PAvti response to volumexpansion with 94% specificity (Barbier C: Intensive Care Med 2004; 30: 1740-1746)

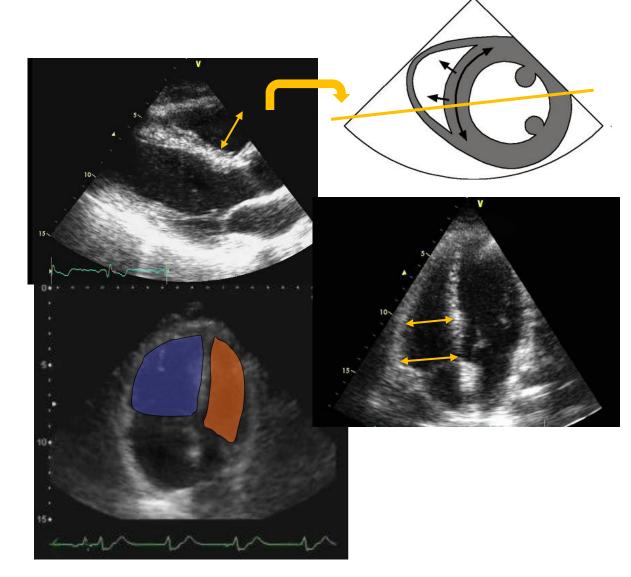

RV inflow: 2D

- RA filling: IVC and hepatic veins
 - dilatation not dependent on ventilation modality
- RA Pressure: 2D a M mode IVC
- RA size: Up to 38 mm (28-53mm), RA area: <20cm²
- IA septum: medial-RA, midsystolic shift to LA, impact of respiratory cycle (IPPV)
 - Permanent bowing into RA implicates LAP>15 mmHg (Royse C, 1994 and 2014)
- IA septal aneurysms/defects
 - LA-RA
 - RV overload, PH, RVF

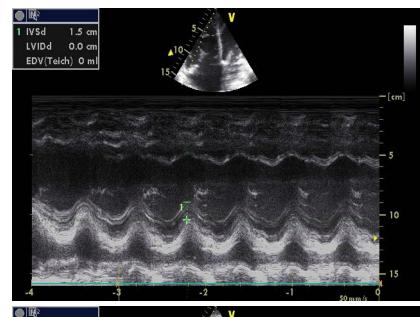


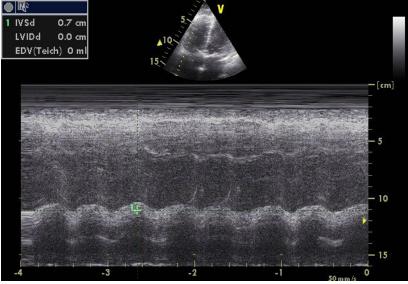
RV inflow: TR

- Hepatic veins
- S wave, D wave
- small reversal between them (TV annular recoil)
- A wave as systolic reversal in atrial systole (IV phase of diastole)


- Flattening or reversal of S wave
- Sig. reversal > 0.3-0.4 m/s
- In relation to severity of TR

Step 1: IVC Diameter: If >2cm, proceed to step 2 **Venous Excess Ultrasound** Interpretation RV inflow: Vo **VExUS** Grade 0 **Step 2:** Hepatic Vein Doppler (no congestion) IVC < 2cm NORMAL Mildly Abnormal Severely Abnormal 130 Pulm **Pulm** Veins **Arteries** S wave S<D s Pressure (mm Hg) Grade 1 Reversal (Mild congestion) IVC ≥2cm and any combo of Normal or Mildly Abnl Step 3: Portal Vein Doppler Right Left **Patterns** Heart Heart Severely Abnormal Mildly Abnormal NORMAL **Aorta** < 30% Grade 2 (Moderate congestion) *Pulsatility Index= (Vmax-Vmin)/Vmax IVC ≥2cm and **ONE Severely Abni** Step 4: Renal Vein Doppler **Pattern** NORMAL Mildly Abnormal Severely Abnormal Grade 3 (Severe congestion) IVC >2cm Continuous Monophasic flow with Monophasic Flow and Only Diastolic Phase ≥ 2 Severely Abnl Pocus101.com **Patterns** POCUS 101 ic DO_2/VO_2 Critical Care Doppler study of portal vein and renal venous velocity predict the appropriate fluid and PK/PD 20 response to diuretic in ICU: a prospective Pulsatility portal index, AUC: 0.80 (CI_{95%}:0.70 to 0.92, p=0.001) observational echocardiographic evaluation Renal venous index, AUC: 0.72 (CI_{95%}:0.61 to 0.84, p=0.001) VEXUS score, AUC: 0.66 (CI_{95%}:0.53 to 0.79, p=0.012)


RV assessment by echocardiography


- Basal (tricuspid) and midventricular taken in A4C
- Parasternal RV inflow underestimates foreshortening
- RV EDA / LV EDA < 0.6
- Moderate dilatation 0.6-1.0
- Severe > 1.0
- TV anulus closer to apex than mitral
- Contractility essentials
 - Apical kinetics (LV!)
 - Free wall contractility
 - Longitudinal contractility

RV outflow: contractility

- RV_EF: linear relationship to survival on IPPV
- RV_EF: impact on outcome in CHF with CAD
- RV function prognosis in CHF on LVAD and HTx
- RV function prognosis in chronic pulmonary disease (e.g. COPD in ICU care)
- RV function predicts exercise capacity (6min WT) and survival in PH
- RV contractile reserve 1-year outcome in dilated cardiomyopathy

RV on IPPV and prognosis

Intensive Care Med (2023) 49:946-956 https://doi.org/10.1007/s00134-023-07147-z

ORIGINAL

ICU Day

25

Echocardiography phenotypes of right ventricular involvement in COVID-19 ARDS patients and ICU mortality: post-hoc (exploratory) analysis of repeated data from the **ECHO-COVID** study

Stephen Huang¹, Antoine Vieillard-Baron^{2,3}, Bruno Evrard⁴, Gwenaël Prat⁵, Michelle S. Chew⁶, Martin Balik⁷, Fernando Clau-Terré⁸, Daniel De Backer⁹, Armand Mekontso Dessap¹⁰, Sam Orde¹, Andrea Morelli¹¹, Filippo Sanfilippo¹², Cyril Charron^{2,3} and Philippe Vignon^{4,13*} on behalf of the ECHO-COVID study group 100 **RV** injuries 75 -Number of echo studies **RVdys** ACP + RVF ACP + RVdvs RVF + RVdvs

- RD dysfunction: TAPSE<16 mm, HR 1:20 ratio
- RVF: RV dilatation + CVP>8 mmHg/IVC dilated, HR 1.56
- ACP: LVEDA/RVEDA>0.6, PSM, HR 2.09

11

RV contractility and sensitivity to afterload

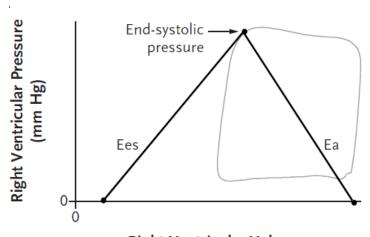
- RV cycle with limited isovolumic stage.... x LV
- PA functional reserve: -30-50%
- PAP up to 40 mmHg tolerated without previous adaptation: dilated RV, prolonged isovolumic contraction
- Increase of RV afterload, tendency for ischaemia:
 - Diastolic perfusion only
 - Increased myocardial mass (chronic)

D'Alto et al. Crit Care (2020) 24:670 https://doi.org/10.1186/s13054-020-03385-5

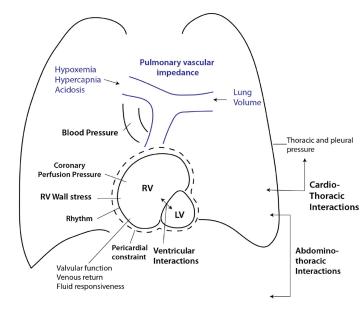
Critical Care

RESEARCH Open Access

Right ventricular-arterial uncoupling independently predicts survival in COVID-19 ARDS


Michele D'Alto^{1*†}, Alberto M. Marra^{2†}, Sergio Severino³, Andrea Salzano⁴, Emanuele Romeo¹,

ESC HEART FAILURE
ESC Heart Failure (2023)
Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ehf2.14289


Prognostic implication of a novel right ventricular injury score in septic patients

ORIGINAL ARTICLE

Hongmin Zhang^{1*}, Dingding Zhang², Xiaoting Wang^{1*}, Ye Liu³, Hui Lian⁴, Qing Zhang¹, Hua Zhao¹,

Right Ventricular Volume (ml)

- Ees /Ea RV between 1.5-2 (x LV 0.9-1), RV-PA coupling: TAPSE/PAPs > 0.63- 0.47 mm/mmHg
- RV-PA uncoupling Ees/EaTAPSE/PAPs ≤0.4 mm/mmHg

Intensive Care Med (2018) 44:774–790 https://doi.org/10.1007/s00134-018-5172-2

IPPV: dynamic and static power delivered to the cardiorespiratory system

$$Power_{rs} = RR \cdot \left\{ \Delta V^2 \cdot \left[\frac{1}{2} \cdot EL_{rs} + RR \cdot \frac{(1+l:E)}{60 \cdot l:E} \cdot R_{aw} \right] + \Delta V \cdot PEEP \right\},$$

IPPV = mechanical power

- Vt (exponential²)
- ΔPaw (Pplat-PEEP) (exponential²)
- Flow (exponential²)
- PEEP (exponential^{1.4})
- RR (linear)

....mechanical damage to lung

- Lung size (small with lower threshold..)
- Edema, inflammation
- Inhomogenity (main factor for VILI!)
- Perfusion
- pH, pCO₂, pO₂

Extremes of IPPV: Are worshippers of LRM chasing a right physiology model?

Baby lung

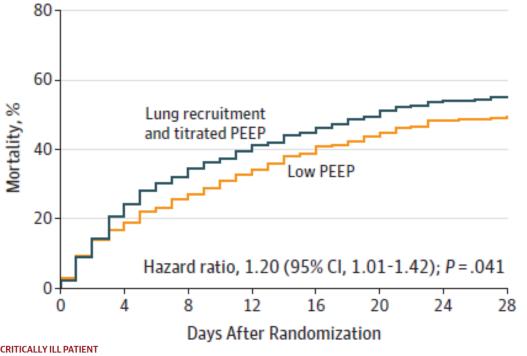
- Animal model of surfactant removal (lavage with a detergent)
- <u>Dominant collapse</u> of the distal bronch.
 tree in contrast to inflammation and edema
- Weight not increased, size reduced....
- Responds to LRM

Steinberg J, Schiller HJ, Halter JM, Gatto LA, Dasilva M, Amato M, McCann UG, Nieman GF: Tidal volume increases do not affect alveolar mechanics in normal lung but cause alveolar overdistension and exacerbate alveolar instability after surfactant deactivation. Crit Care Med 2002, 30:2675-2683.

Spragg RG, Smith RM, Harris K, Lewis J, Hafner D, Germann P: Effect of recombinant SP-C surfactant in a porcine lavage model of acute lung injury. J Appl Physiol 2000, 88:674-681.

Inflammatory ARDS

- ARDS induced by oleic acid
- Inflammation of lung parenchyma distension rather then a collapse
- distal bronch tree filled with hemorh. fluid
- Weight increased
- No response to LRM
- LRM blows up the less affected lung regions, Vd increases
- Dramatic impact on pulmonary perfusion and RV afterload


DiRocco JD, Pavone LA, Carney DE, Lutz CJ, Gatto LA, Landas SK, Nieman GF: **Dynamic alveolar mechanics in four models of lung injury**. *Intensive Care Med* 2006, **32**:140-148.

RV, pulmonary circulation and splanchnic perfusion were NOT an endpoint in any lung recruitment study (!)

Lung Docruitmont

- LOVS
- ExPress
- Pharlap
- EPVEnt 2
- ART

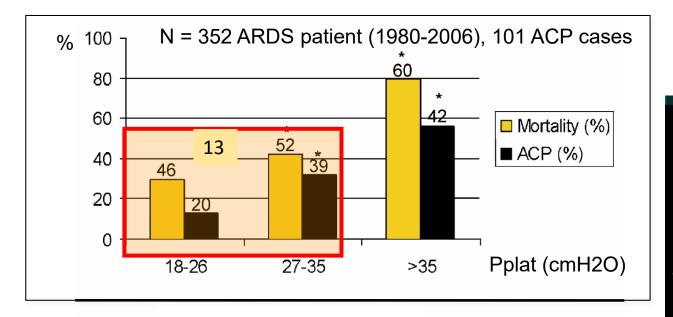
Mild ALI (n=62)a	ARDS (n=401)
60 (96.8)	382 (95.3)
24 (38.7)	222 (55.4)
28 (45.2) 41 (66.1)	142 (35.4) 300 (74.8)
7 (11.3)	67 (16.7)
5 (8.1)	75 (18.7)
6 (9.7)	91 (22.7)
7.40 (0.10) 39.7 (9.5)	7.34 (0.14) 44.9 (12.7)
239 (30)	119 (43)
34 (24–45)	41 (32–52)
4.9 (2.5)	7.1 (3.5)

Brun-Buisson C, et al. ALIVE Study. INT CARE MED 2003

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Lung Recruitment and Titrated Positive

End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality

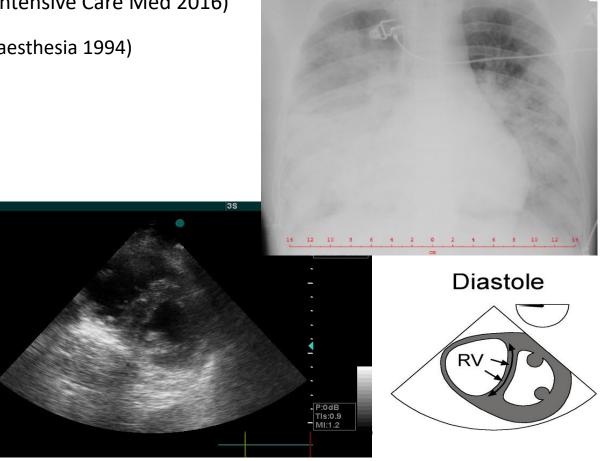

in Patients With Acute Respiratory Distress Syndrome

A Randomized Clinical Trial

	.,	Maneuver With PEEP	Low-PEEP Group	Type of	Effect Estimate		
	Outcome		Titration Group (n = 501)	(n = 509)	Effect Estimate	(95% CI)	P Value
	Primary Outcome						
	Death ≤28 d, No. of events/total No.	. (%)	277/501 (55.3)	251/509 (49.3)	HR	1.20 (1.01 to 1.42)	.041
	Within 6 mo ^a		327/501 (65.3)	305/509 (59.9)	HR	1.18 (1.01 to 1.38)	.04

Aggresive IPPV in ARDS: risk of RV failure

- typically in predisposed patients
- ACP up to 33% (Jardin F, Intensive Care Med 2007)
- Pplat < 27 mbar only 13%
- ACP 22% (ΔPaw 18±5 vs 16±5 mbar) (Mekontso-Dessap, Intensive Care Med 2016)
- Survival on IPPV linearly related to EF RV (Steltzer H: Anaesthesia 1994)
- ACP and RVF as an indication to VA-ECMO....


Jardin F, Vieillard-Baron A. INT CARE MED 2007

Intensive Care Med (2016) 42:862-870 SEVEN-DAY PROFILE PUBLICATION

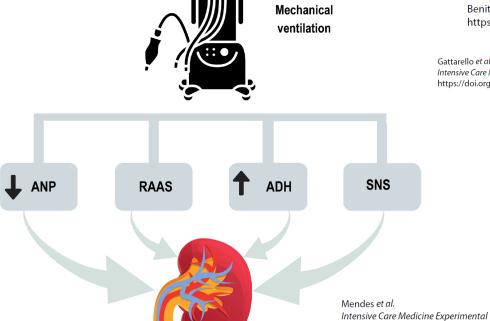
Armand Mekontso Dessap Florence Boissier Cvril Charron Emmanuelle Bégot Xavier Repessé Annick Legras Christian Brun-Buisson Philippe Vignon **Antoine Vieillard-Baron**

Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact

IPPV, RV and kidney function

- Days of IPPV bound to ARF/RRT and outcome in Covid-19
- PEEP+volume expansion+neurohumoral effects
- Role of CVP and Echocardiography+CUS in IPPV setting
- VV-ECMO may alleviate aggressive IPPV and PEEP splanchnic perfusion

https://doi.org/10.1186/s40635-024-00672-1


COVID-19 vs. Control: Day Days 3 to 7 -Days 8 to 14 -Days 15 to 21 -Days >= 21 -IMV: Yes vs. No: Days 1 to 7. Days >= 15 -Age: Reference: 18-59 60-69 70-79 -80-96 -SAPS 3 score: Reference: Low High. Sex: Male vs. Female -1.0 **High PEEP** Panel B Panel A P=0.003 RIFLE 2 RIFLE 3 No AKI RIFLE 1 RIFLE 3 RIFLE 2

Endpoint RRT

Perschinka et al. Annals of Intensive Care

https://doi.org/10.1186/s13613-025-01424-4

(2025) 15:17

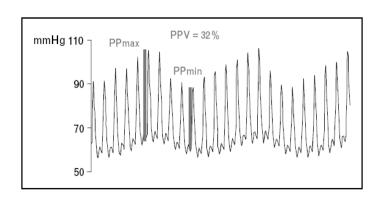
Benites et al. Critical Care (2025) 29:130 https://doi.org/10.1186/s13054-025-05343-5

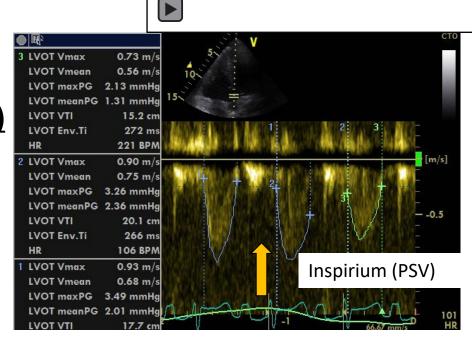
Gattarello et al.

Intensive Care Medicine Experimental (2024) 12:31

https://doi.org/10.1186/s40635-024-00610-1

Low PEEP


Elastic component

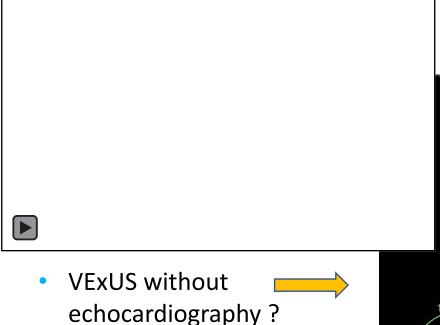

No AKI

RIFLE 1

PPV interpretation in severe RV dysfunction.....

- 1.) decrease of RVEF and increase of RVEDV with RV dilatation
- 2.) Permanent increase of PVR leads to acute cor pulmonale:
 - a.) RV dilatation (RVEDA/LVEDA>0.6)
 - b.) paradoxic septal motion
- 3.) increase of CVP
- 5.) decrease of SV and CO
 - pulsus paradoxus
 - dDown Effect (Pp, BPs variation)

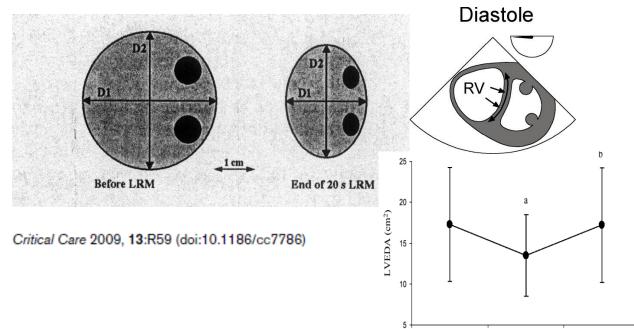
48y male drinker, intubated for hypoxia


- Pneumococcus
- SIMV, Pplat 32, PEEP 14, f 24/min, I/E 1/1.5, FiO₂ 0.80
- Bilateral CDs: drainage 12F L 450 ml and 20F R 950 ml
- Septic shock, NAD 0.45 ug/kg.min, lactate 2.8 mmol/l
- Persisting requirement for high FiO₂
- LRM 44 mbar/PEEP 20 mbar/40 min..18 mbar/3h
- Remaining on Pplat 36, PEEP 16, f 20/min, I/E 1/1.2, FiO_2 0.50....NAD 0.75 ug/kg.min, lactate 6.2
- FiO₂ 0.45, improved gases and X-ray.....
- Sinus 120/min, NAD 0.85 ug/kg.min, lactate 6.8 mmol/l, CO 6.4 l/min
- Hypoglycaemia, bilirubin 65 umol/l, AST 20.5, ALT 18.5 ukat/l....
- ARF, start CRRT

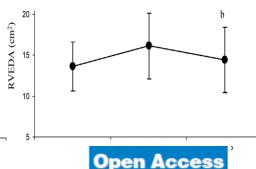
LRM induced RV failure and ARF (+16h)

- Pressure/volume overload of the RV
- Signs of ACP, no PH (CVP 18 mmHg + 17 mmHg TRcw)
- RV/PA uncoupling: TAPSE/PAPs 5/17 = 0.29 mm/mmHg
- Liver congestion in primary steatofibrosis
- Ventilator induced cardiorenal syndrome, CRRT + RCA....

echocardiography?



Lung recruitment maneuver - if ever, then always with echo!


Decreased EI (D2/D1)= RV pressure overload, risk of ACP, diastolic LV failure

Decrease of SV_{RV} and LV preload reduces SV and CO by 50%, MAP by 20%

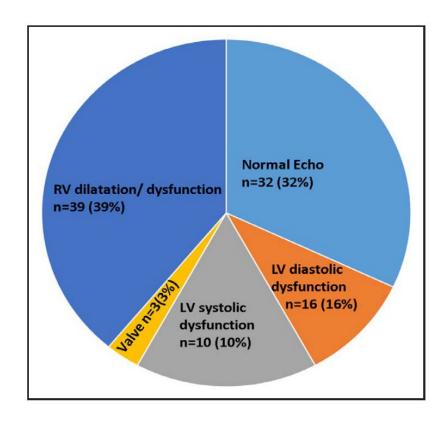
(Nielsen J: Intensive Care Med 2005)

- +16h:...BIPAP, Pinsp 24, PEEP 8, f 18/min, IT 1.3s, FiO₂ 0.65, PSV 12 mbar, Vt 570 ml
- Weaned via PSV, extubated day 5.
- Off CRRT on day 6., regained renal functions
- Discharged day 7.

Research

Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome

Christian Gernoth¹, Gerhard Wagner², Paolo Pelosi³ and Thomas Luecke¹



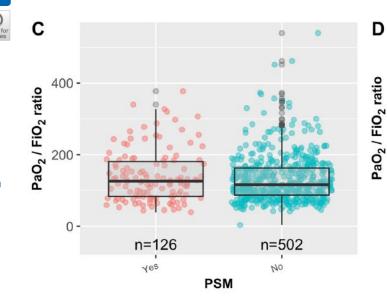
Circulation

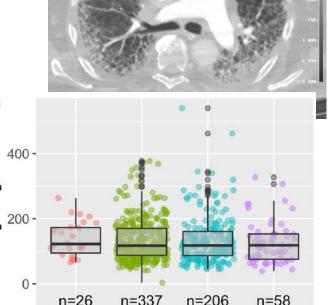
ORIGINAL RESEARCH ARTICLE

Spectrum of Cardiac Manifestations in COVID-19

A Systematic Echocardiographic Study

- Dilated RV and PH in 31-39%
- Related to mortality, OR 4.5, p=0.005
 - (Argulian E, JACC 2020, 13:2459-60)
- SV arrhythmias in 44% ICU patients


RV echocardiography parameters as an indication to earlier VV-ECMO instead of later VA?



Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study)

Stephen Huang¹, Philippe Vignon², Armand Mekontso-Dessap³, Ségolène Tran⁴, Gwenael Prat⁵, Michelle Chew⁶, Martin Balik⁷, Filippo Sanfilippo⁸, Gisele Banauch⁹, Fernando Clau-Terre¹⁰, Andrea Morelli¹¹, Daniel De Backer¹², Bernard Cholley¹³, Michel Slama¹⁴, Cyril Charron⁴, Marine Goudelin², Francois Bagate³, Pierre Bailly⁵, Patrick-Johansson Blixt⁶, Paul Masi³, Bruno Evrard², Sam Orde¹, Paul Mayo¹⁵, Anthony S. McLean¹ and Antoine Vieillard-Baron^{4,16*} on behalf of the ECHO-COVID research group

- No relation between right heart echoparameters and ELSO oxygenation/ ventilation criteria for VV-ECMO
- Progression of ACP towards a need for VA-ECMO not desirable in ARDS with higher BMI

Petit *et al. Crit Care* (2021) 25:220 https://doi.org/10.1186/s13054-021-03646-x

Critical Care

RV size (visual)

RESEARCH LETTER

Open Access

Evaluation of right ventricular function and driving pressure with blood gas analysis could better select patients eligible for VV ECMO in severe ARDS

Thank you for your attention!

Complex Cardiovascular Center 1^{St.} Medical Faculty of Charles University, General University Hospital

U nemocnice 2; 128 08, Prague 2, EU

T: +420 224 962 243

F: +420 224 962 118

E: martin.balik@vfn.cz

www.karim-vfn.cz

