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What we already know…

OUTCOME
(transfusion)

clinical data algorithm mimics supervisor



To transfuse or
not to transfuse?

The elephant in the room



The solution everyone

is talking about…

Hurley, Transfusion, 2024
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1. Same recommendation various effects!

2. Guidelines are a coarse instrument



The role of these guidelines…



How do we get these guidelines?



Shortcoming of this approach



The new paradigm
Reinforcement Learning!

Silver, Science, 2018
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per weighted horizon importance sampling: 
PWHIS
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Off-policy evaluation of Hb policies



Hb policies evaluated
for all patients



Hb policies evaluated
for myocardial infarction patients



Can you improve this with
reinforcement learning?



Evaluating Policy after Q-learning
of the MIMIC IV data

Survival Transfusion Frequency

p<0.05 p<0.05



The problems of reinforcement
learning

Jayaraman, Digital Medicine, 2024



Conclusion

• ML models are well established for transfusion
prediction

• LLMs might be able to guide transfusion in the future

• Reinforcement learning is the way to go!

• Hb based transfusion policies have (probably) no
effect on survival

• one can build a reinforcement learning model, that
• transfuses less
• has no influence on survival


