
What do these have in common?

Outline

- 1 Comparison of the approaches
- Combining strengths of each approach into a single algorithm (+ a bonus tool for UI detection)
- 3 Structured technique for evaluation of acid-base disorders

The classical approach

Stewart's approach

Boston approach

Do they lead to the same conclusions?

- Yes, most of the time.

Analytic calculation of physiological acid-base parameters in plasma

E. WRENN WOOTEN

Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232

328

PHYSIOLOGICAL ACID-BASE PARAMETERS

Differentiation of Eq. 15 with respect to pH yields

$$\frac{\partial C_{B}}{\partial pH} = \frac{\partial [HCO_{3}^{-}]}{\partial pH} - \sum_{l} C_{l} \frac{\partial \overline{n}_{l}}{\partial pH}$$
(16)

It turns out that because of the large number of buffer where \overline{z}_i is the average charge per molecule for species igroups on plasma proteins $\partial \overline{n}_i / \partial pH$ is approximately linear over the physiological pH range, so that Eq. 16, using Eq. 15, can be recast in integrated form as

$$C_{B} = [HCO_{3}^{-}] - \left(\sum_{I} C_{I} \frac{\partial \overline{n}_{I}}{\partial pH}\right) pH + \sum_{I} C_{I} \overline{n}_{max(I)} + C \quad (17)$$

The constant C depends on the concentrations and identities of the various species 1 and is given by

$$C = -\sum_{i} C_{i} b_{i} \qquad (18)$$

where b_i is a constant that depends on the difference between the pH at which the slope is determined and the negative base ten logarithm of the dissociation constant (pK) of species i. Equation 17 is referred to as the Van Slyke equation (25).

Physiological pH is determined under the simultaneous solution of the Van Slyke equation and the Henderson-Hasselbalch equation (1a)

where pK' = 6.103 and S is the equilibrium constant

$$pH = pK' + log \frac{[HCO_3^-]}{S \cdot Pco_2}$$
(19)

By virtue of the principle of electroneutrality, SID can also be calculated, in analogy to Eq. 12, by

$$SID = C - \sum_{i} C_{i}\overline{z}_{i} - D \qquad (22)$$

and is given by

$$\overline{Z}_{I} = \sum_{I(i)=0}^{\overline{n}_{\max(i)}} \left[\overline{Z}_{\min(i)} + J(I) \alpha_{J(i)} \right]$$
 (23)

 $\overline{z}_{\min(l)}$ is the minimum possible charge for species $\it 1.$ $\it Equation~22$ is a more general form of the equations of Stewart (29) and Figge et al. (7). After neglecting the terms with small values under physiological conditions as before, Eq. 22 gives, in analogy with Eq. 14

$$SID = [HCO_3^-] - \sum C_i \overline{z}_i \qquad (24)$$

In analogy with Eq. 15

$$SID = [HCO_3^-] - \sum_{i} C_{i} \overline{n}_{i} - \sum_{i} C_{i} \overline{z}_{min(i)}$$
 (25)

Several additional relations are worth pointing out, including

$$\overline{n}_l + \overline{z}_{\min(\hbar)} = \overline{z}_l$$
 (26)

$$\frac{\partial \overline{n}_{I}}{\partial pH} = \frac{\partial \overline{z}_{I}}{\partial pH} \tag{27}$$

Q1 Do they lead to the same conclusions?

- Yes, most of the time.

The classical approach

Stewart's approach

Boston approach

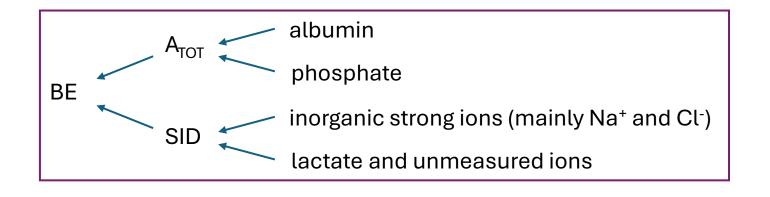
Q2 So why bother?

- Some algorithms are more intuitive than others.
- There are certain unique strengths in each.

	Respiratory parameter	Metabolic parameter
The classical approach	pCO ₂	
Stewart's approach	pCO ₂	
Boston approach	pCO ₂	

Everyone agrees.

UI


calculation

Additional

properties

	Respiratory parameter	Metabolic parameter	UI calculation	Additional properties
The classical approach	pCO ₂	BE		
Stewart's approach	pCO ₂	SID and A _{TOT}		
Boston approach	pCO ₂	HCO ₃ -		

BE is a better overall parameter than HCO_3^- .

	Respiratory parameter	Metabolic parameter	UI calculation	Additional properties
The classical approach	pCO ₂	BE	Anion gap	
Stewart's approach	pCO ₂	SID and A _{TOT}	Strong ion gap	
Boston approach	pCO ₂	HCO ₃ -	Anon gap	

$$AG = [Na^+] + [K^+] - [Cl^-] - [HCO_3^-]$$

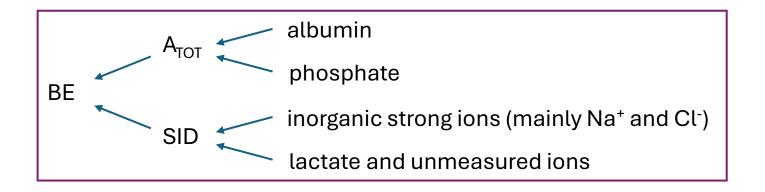
$$SIG = [Na^{+}] + [K^{+}] + 2 \times [Ca^{2+}] + 2 \times [Mg^{2+}] - [Cl^{-}]$$

- $[HCO_{3}^{-}] - Alb \times (0.123 \times pH - 0.631) - Pi \times (0.309 \times pH - 0.469)$

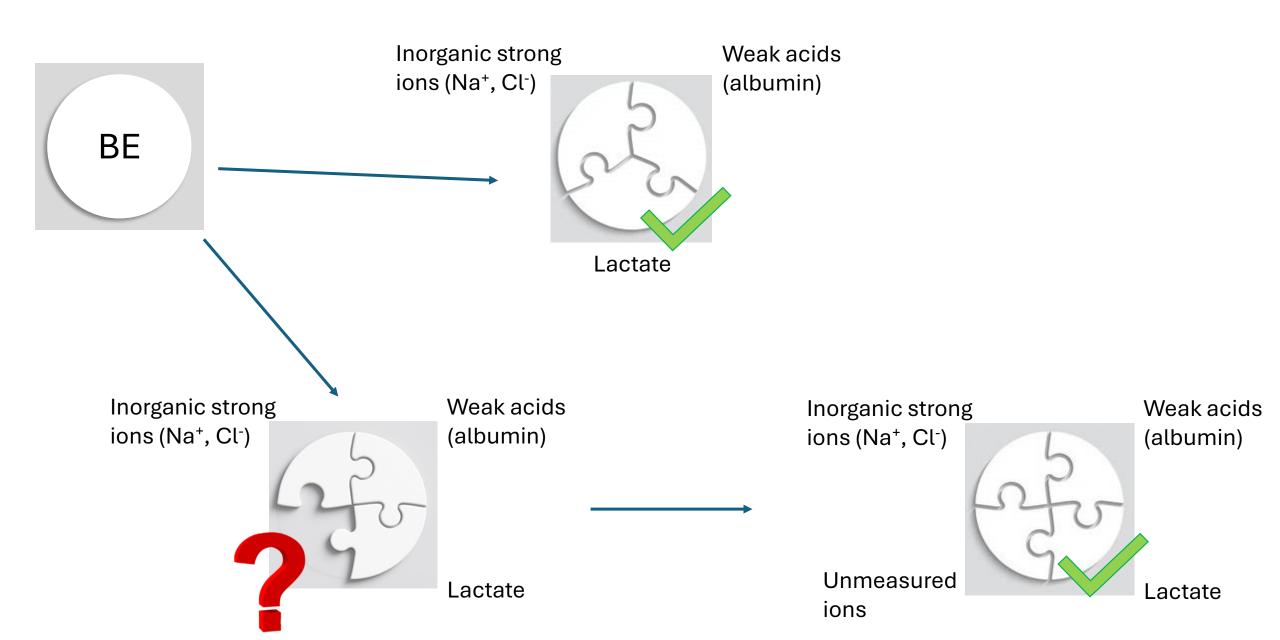
ref. 12 – 16 mmol/L

ref. < 4 mmol/L

	Respiratory parameter	Metabolic parameter	UI calculation	Additional properties
The classical approach	pCO ₂	BE	Anion gap	
Stewart's approach	pCO ₂	SID and A _{TOT}	Strong ion gap	
Boston approach	pCO ₂	HCO ₃ -	Anon gap	Quantitative rules for compensation


e.g.: Winters' formula for expected compensation in MAC

$$pCO_2(kPa) = \frac{HCO_3^-}{5} + 1$$


Outline

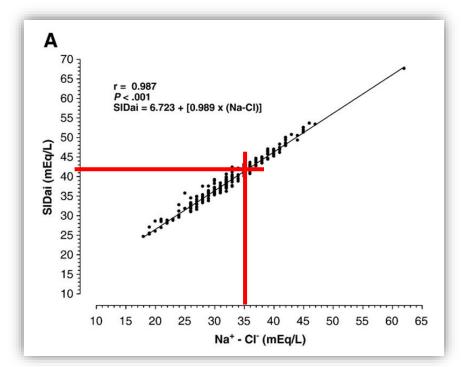
- 1 Comparison of the approaches
- (2) Combining strengths of each approach into a single algorithm (+ a bonus tool for UI detection)
- 3 Structured technique for evaluation of acid-base disorders

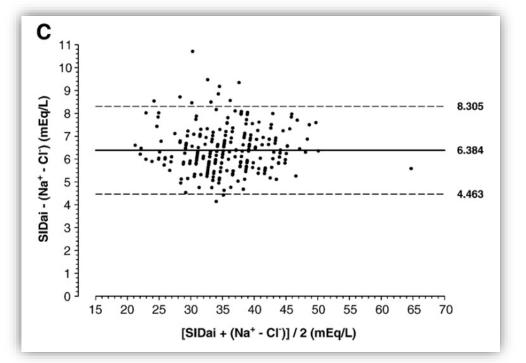
	Respiratory parameter	Metabolic parameter	UI calculation	Additional properties
The classical approach	pCO ₂	BE	Anion gap	
Stewart's approach	pCO ₂	SID and A _{TOT}	Strong ion gap	
Boston approach	pCO ₂	HCO ₃ -	Anon gap	Quantitative rules for compensation
			BE not explained by known factors	

UI detection by BE partitioning

Outline

- 1 Comparison of the approaches
- Combining strengths of each approach into a single algorithm (+ a bonus tool for UI detection)
- 3 Structured technique for evaluation of acid-base disorders


The principle


The effect of strong ions on BE

$$BE_{SID} = SID - SID_{norm}$$

$$BE_{SID} = SID - 42$$

$$BE_{SID} = [Na^{+}] - [Cl^{-}] - 34$$

The principle

The effect of strong ions on BE – pH correction

Why?

pH-driven strong ion redistribution causes discrepancy between ΔBE and ΔSID

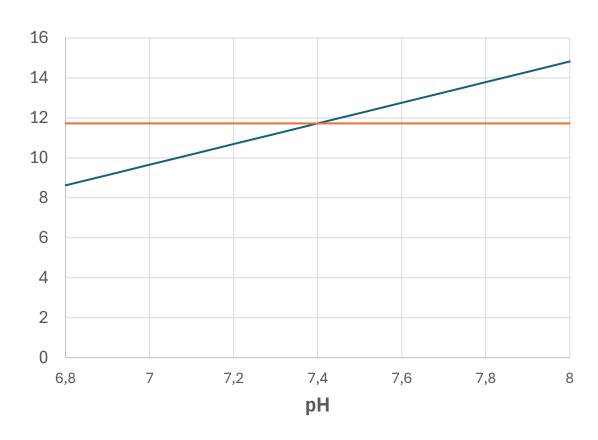
рН	Normal [Na ⁺]–[Cl ⁻]
7.0	40
7.2	37
7.4	34
7.6	31
7.8	28

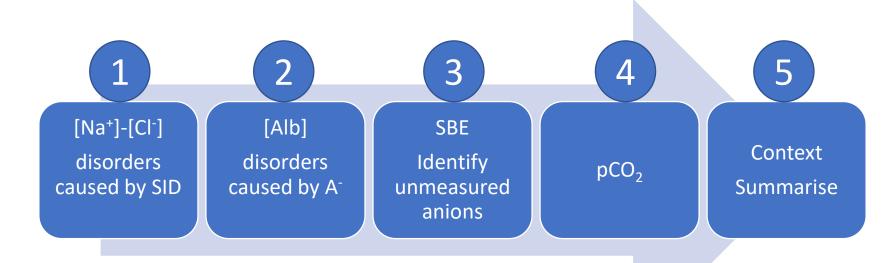
Remedy?

For every 0.1 pH unit the reference SID (or [Na⁺]–[Cl⁻]) changes by 1.5 mEq/L in the opposite direction.

The principle

The effect of albumin on BE





the charge of albumin (mEq/g)

the deviation in albumin concentration (g/L)

Compare Na-Cl with 34 mM

(apply correction to 34 if pH is extreme: +1.5 for pH -0.1)

Add 3mM to predicted SBE for each 10g/L below 40 g/L Compare BE on BG strip with BE predicted, Look at lactate

Use "Bostron rules", eg. Winters' formula Thank you for your attention.

